Genotype-Phenotype Correlations in Corneal Dystrophies: Advances in Molecular Genetics and Therapeutic Insights

. 2025 Apr ; 53 (3) : 232-245. [epub] 20250313

Jazyk angličtina Země Austrálie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40079222

Grantová podpora
SVV 2600631 UNIVERZITA KARLOVA
UNCE/24/MED/022 UNIVERZITA KARLOVA
MH CZDRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky
NW24-06-00083 Ministerstvo Zdravotnictví Ceské Republiky
NW25-07-00303 Ministerstvo Zdravotnictví Ceské Republiky

Corneal dystrophies are a group of predominantly rare inherited disorders. They are by definition bilateral, relatively symmetrical, and without systemic involvement, affecting corneal transparency and/or refraction. Traditional classification of corneal dystrophies is based on slit-lamp appearance, affected corneal layer and histological features. Molecular genetics has provided ultimate proof for the existence of distinct corneal dystrophies and discarded duplicates in their terminology. Currently, there are at least 16 genes with identified pathogenic variants implicated in corneal dystrophies. Herein, we summarise contemporary knowledge on genotype-phenotype correlations of corneal dystrophies, including a critical review of some reported variants, along with the understanding of the underlying pathogenic dystrophic process; essential knowledge for the development of targeted therapies.

Zobrazit více v PubMed

Weiss J. S., Rapuano C. J., Seitz B., et al., “IC3D Classification of Corneal Dystrophies‐Edition 3,” Cornea 43, no. 4 (2024): 466–527. PubMed PMC

Richards S., Aziz N., Bale S., et al., “Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology,” Genetics in Medicine 17, no. 5 (2015): 405–424. PubMed PMC

Patterson K., Chong J. X., Chung D. D., et al., “Lisch Epithelial Corneal Dystrophy Is Caused by Heterozygous Loss‐Of‐Function Variants in MCOLN1,” American Journal of Ophthalmology 258 (2024): 183–195. PubMed

Braddock F. L., Gardner J. C., Bhattacharyya N., et al., “Autosomal Dominant Stromal Corneal Dystrophy Associated With a SPARCL1 Missense Variant,” European Journal of Human Genetics 32, no. 12 (2024): 1583–1589, 10.1038/s41431-024-01687-8. PubMed DOI PMC

Roshandel D., Semnani F., Rayati Damavandi A., et al., “Genetic Predisposition to Ocular Surface Disorders and Opportunities for Gene‐Based Therapies,” Ocular Surface 29 (2023): 150–165. PubMed

Jozaei R., Javadi M. A., Safari I., et al., “Genetic Screening of TGFBI in Iranian Patients With TGFBI‐Associated Corneal Dystrophies and a Meta‐Analysis of Global Variation Frequencies,” Ophthalmic Genetics 43, no. 4 (2022): 496–499. PubMed

Xie J. and Li L., “Functional Study of SCCD Pathogenic Gene UBIAD1 (Review),” Molecular Medicine Reports 24, no. 4 (2021): 706, 10.3892/mmr.2021.12345. PubMed DOI PMC

Zhang J., Wu D., Li Y., Fan Y., Dai Y., and Xu J., “A Comprehensive Evaluation of 181 Reported CHST6 Variants in Patients With Macular Corneal Dystrophy,” Aging (Albany NY) 11, no. 3 (2019): 1019–1029. PubMed PMC

Landrum M. J., Lee J. M., Benson M., et al., “ClinVar: Improving Access to Variant Interpretations and Supporting Evidence,” Nucleic Acids Research 46, no. D1 (2018): D1062–D1067, 10.1093/nar/gkx1153. PubMed DOI PMC

Hemadevi B., Veitia R. A., Srinivasan M., et al., “Identification of Mutations in the SLC4A11 Gene in Patients With Recessive Congenital Hereditary Endothelial Dystrophy,” Archives of Ophthalmology 126, no. 5 (2008): 700–708. PubMed

Aldahmesh M. A., Khan A. O., Meyer B. F., and Alkuraya F. S., “Mutational Spectrum of SLC4A11 in Autosomal Recessive CHED in Saudi Arabia,” Investigative Ophthalmology & Visual Science 50, no. 9 (2009): 4142–4145. PubMed

Liu N. P., Smith C. F., Bowling B. L., Jonasson F., and Klintworth G. K., “Macular Corneal Dystrophy Types I and II Are Caused by Distinct Mutations in the CHST6 Gene in Iceland,” Molecular Vision 12 (2006): 1148–1152. PubMed

Liu N. P., Dew‐Knight S., Rayner M., et al., “Mutations in Corneal Carbohydrate Sulfotransferase 6 Gene (CHST6) Cause Macular Corneal Dystrophy in Iceland,” Molecular Vision 6 (2000): 261–264. PubMed

Liskova P., Dudakova L., Evans C. J., et al., “Ectopic GRHL2 Expression due to Non‐Coding Mutations Promotes Cell State Transition and Causes Posterior Polymorphous Corneal Dystrophy 4,” American Journal of Human Genetics 102, no. 3 (2018): 447–459. PubMed PMC

Davidson A. E., Liskova P., Evans C. J., et al., “Autosomal‐Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non‐Coding Mutations in the Promoter of OVOL2,” American Journal of Human Genetics 98, no. 1 (2016): 75–89. PubMed PMC

Weiss J. S. and Afshari N. A., “Corneal Guttae Alone Do Not Make a Diagnosis of Fuchs' Endothelial Corneal Dystrophy,” American Journal of Ophthalmology 264 (2024): x–xii. PubMed

Fautsch M. P., Wieben E. D., Baratz K. H., et al., “TCF4‐Mediated Fuchs Endothelial Corneal Dystrophy: Insights Into a Common Trinucleotide Repeat‐Associated Disease,” Progress in Retinal and Eye Research 81 (2021): 100883. PubMed PMC

Aiello F., Gallo Afflitto G., Ceccarelli F., Cesareo M., and Nucci C., “Global Prevalence of Fuchs Endothelial Corneal Dystrophy (FECD) in Adult Population: A Systematic Review and Meta‐Analysis,” Journal of Ophthalmology 2022 (2022): 3091695. PubMed PMC

Singh R. B., Parmar U. P. S., Kahale F., Jeng B. H., and Jhanji V., “Prevalence and Economic Burden of Fuchs Endothelial Corneal Dystrophy in the Medicare Population in the United States,” Cornea 43, no. 8 (2024): 1022–1027. PubMed

Hardcastle A. J., Liskova P., Bykhovskaya Y., et al., “A Multi‐Ethnic Genome‐Wide Association Study Implicates Collagen Matrix Integrity and Cell Differentiation Pathways in Keratoconus,” Communications Biology 4, no. 1 (2021): 266. PubMed PMC

Xu L. Y., Zheng X. D., Yin S. S., et al., “Association of Novel Loci With Keratoconus Susceptibility in a Chinese Genome‐Wide Association Study,” Investigative Ophthalmology & Visual Science 65, no. 5 (2024): 29. PubMed PMC

Irvine A. D., Corden L. D., Swensson O., et al., “Mutations in Cornea‐Specific Keratin K3 or K12 Genes Cause Meesmann's Corneal Dystrophy,” Nature Genetics 16, no. 2 (1997): 184–187. PubMed

McLean W. H. and Moore C. B., “Keratin Disorders: From Gene to Therapy,” Human Molecular Genetics 20, no. R2 (2011): R189–R197. PubMed

Hassan H., Thaung C., Ebenezer N. D., Larkin G., Hardcastle A. J., and Tuft S. J., “Severe Meesmann's Epithelial Corneal Dystrophy Phenotype due to a Missense Mutation in the Helix‐Initiation Motif of Keratin 12,” Eye (London, England) 27, no. 3 (2013): 367–373. PubMed PMC

Allen E. H., Courtney D. G., Atkinson S. D., et al., “Keratin 12 Missense Mutation Induces the Unfolded Protein Response and Apoptosis in Meesmann Epithelial Corneal Dystrophy,” Human Molecular Genetics 25, no. 6 (2016): 1176–1191, 10.1093/hmg/ddw001. PubMed DOI PMC

Malhotra J. D. and Kaufman R. J., “The Endoplasmic Reticulum and the Unfolded Protein Response,” Seminars in Cell & Developmental Biology 18, no. 6 (2007): 716–731. PubMed PMC

Jonsson F., Bystrom B., Davidson A. E., et al., “Mutations in Collagen, Type XVII, Alpha 1 (COL17A1) Cause Epithelial Recurrent Erosion Dystrophy (ERED),” Human Mutation 36, no. 4 (2015): 463–473. PubMed

Oliver V. F., van Bysterveldt K. A., Cadzow M., et al., “A COL17A1 Splice‐Altering Mutation Is Prevalent in Inherited Recurrent Corneal Erosions,” Ophthalmology 123, no. 4 (2016): 709–722. PubMed

Sullivan L. S., Zhao X., Bowne S. J., et al., “Exclusion of the Human Collagen Type XVII (COL17A1) Gene as the Cause of Thiel‐Behnke Corneal Dystrophy (CDB2) on Chromosome 10q23‐q25,” Current Eye Research 27, no. 4 (2003): 223–226. PubMed

McGrath J. A., Gatalica B., Christiano A. M., et al., “Mutations in the 180‐kD Bullous Pemphigoid Antigen (BPAG2), a Hemidesmosomal Transmembrane Collagen (COL17A1), in Generalized Atrophic Benign Epidermolysis Bullosa,” Nature Genetics 11, no. 1 (1995): 83–86, 10.1038/ng0995-83. PubMed DOI

Turunen J. A., Tuisku I. S., Repo P., et al., “Epithelial Recurrent Erosion Dystrophy (ERED) From the Splice Site Altering COL17A1 Variant c.3156C>T in Families of Finnish‐Swedish Ancestry,” Acta Ophthalmologica 102, no. 3 (2024): 296–305. PubMed

Bruckner‐Tuderman L. and Has C., “Molecular Heterogeneity of Blistering Disorders: The Paradigm of Epidermolysis Bullosa,” Journal of Investigative Dermatology 132, no. Suppl 3 (2012): E2–E5. PubMed

Fine J. D., Johnson L. B., Weiner M., et al., “Eye Involvement in Inherited Epidermolysis Bullosa: Experience of the National Epidermolysis Bullosa Registry,” American Journal of Ophthalmology 138, no. 2 (2004): 254–262. PubMed

Loffek S., Hurskainen T., Jackow J., et al., “Transmembrane Collagen XVII Modulates Integrin Dependent Keratinocyte Migration via PI3K/Rac1 Signaling,” PLoS One 9, no. 2 (2014): e87263. PubMed PMC

Gipson I. K., Spurr‐Michaud S., Tisdale A., and Keough M., “Reassembly of the Anchoring Structures of the Corneal Epithelium During Wound Repair in the Rabbit,” Investigative Ophthalmology & Visual Science 30, no. 3 (1989): 425–434. PubMed

Kurbanyan K., Sejpal K. D., Aldave A. J., and Deng S. X., “In Vivo Confocal Microscopic Findings in Lisch Corneal Dystrophy,” Cornea 31, no. 4 (2012): 437–441. PubMed PMC

Gibson D., Brar V., Li R., Kalra A., Goodwin A., and Couser N., “The High Association of Ophthalmic Manifestations in Individuals With Mucolipidosis Type IV,” Journal of Pediatric Ophthalmology and Strabismus 59, no. 5 (2022): 332–337. PubMed

Nakatsukasa M., Kawasaki S., Yamasaki K., et al., “Tumor‐Associated Calcium Signal Transducer 2 Is Required for the Proper Subcellular Localization of Claudin 1 and 7: Implications in the Pathogenesis of Gelatinous Drop‐Like Corneal Dystrophy,” American Journal of Pathology 177, no. 3 (2010): 1344–1355. PubMed PMC

Kinoshita S., Nishida K., Dota A., et al., “Epithelial Barrier Function and Ultrastructure of Gelatinous Drop‐Like Corneal Dystrophy,” Cornea 19, no. 4 (2000): 551–555. PubMed

Kaza H., Barik M. R., Reddy M. M., Mittal R., and Das S., “Gelatinous Drop‐Like Corneal Dystrophy: A Review,” British Journal of Ophthalmology 101, no. 1 (2017): 10–15. PubMed

Skonier J., Neubauer M., Madisen L., Bennett K., Plowman G. D., and Purchio A. F., “cDNA Cloning and Sequence Analysis of Beta Ig‐h3, a Novel Gene Induced in a Human Adenocarcinoma Cell Line After Treatment With Transforming Growth Factor‐Beta,” DNA and Cell Biology 11, no. 7 (1992): 511–522. PubMed

Bae J. S., Lee S. H., Kim J. E., et al., “Betaig‐h3 Supports Keratinocyte Adhesion, Migration, and Proliferation Through alpha3beta1 Integrin,” Biochemical and Biophysical Research Communications 294, no. 5 (2002): 940–948. PubMed

Runager K., Basaiawmoit R. V., Deva T., et al., “Human Phenotypically Distinct TGFBI Corneal Dystrophies Are Linked to the Stability of the Fourth FAS1 Domain of TGFBIp,” Journal of Biological Chemistry 286, no. 7 (2011): 4951–4958. PubMed PMC

Korvatska E., Henry H., Mashima Y., et al., “Amyloid and Non‐Amyloid Forms of 5q31‐Linked Corneal Dystrophy Resulting From Kerato‐Epithelin Mutations at Arg‐124 Are Associated With Abnormal Turnover of the Protein,” Journal of Biological Chemistry 275, no. 15 (2000): 11465–11469. PubMed

Berger T., Weiss J. S., Lisch W., and Seitz B., “The Latest IC3D Classification of Corneal Dystrophies‐Overview and Changes of the 3rd Edition,” Die Ophthalmologie 121 (2024): 714–725. PubMed

Han K. E., Choi S. I., Kim T. I., et al., “Pathogenesis and Treatments of TGFBI Corneal Dystrophies,” Progress in Retinal and Eye Research 50 (2016): 67–88. PubMed

Underhaug J., Koldso H., Runager K., et al., “Mutation in Transforming Growth Factor Beta Induced Protein Associated With Granular Corneal Dystrophy Type 1 Reduces the Proteolytic Susceptibility Through Local Structural Stabilization,” Biochimica et Biophysica Acta 1834, no. 12 (2013): 2812–2822. PubMed PMC

Yamazoe K., Yoshida S., Yasuda M., et al., “Development of a Transgenic Mouse With R124H Human TGFBI Mutation Associated With Granular Corneal Dystrophy Type 2,” PLoS One 10, no. 7 (2015): e0133397. PubMed PMC

Anandalakshmi V., Murugan E., Leng E. G. T., et al., “Effect of Position‐Specific Single‐Point Mutations and Biophysical Characterization of Amyloidogenic Peptide Fragments Identified From Lattice Corneal Dystrophy Patients,” Biochemical Journal 474, no. 10 (2017): 1705–1725. PubMed PMC

Nowinska A. K., Wylegala E., Teper S., et al., “Phenotype and Genotype Analysis in Patients With Macular Corneal Dystrophy,” British Journal of Ophthalmology 98, no. 11 (2014): 1514–1521. PubMed

Singh S., Das S., Kannabiran C., Jakati S., and Chaurasia S., “Macular Corneal Dystrophy: An Updated Review,” Current Eye Research 46, no. 6 (2021): 765–770. PubMed

Aggarwal S., Peck T., Golen J., and Karcioglu Z. A., “Macular Corneal Dystrophy: A Review,” Survey of Ophthalmology 63, no. 5 (2018): 609–617. PubMed

Young R. D., Akama T. O., Liskova P., et al., “Differential Immunogold Localisation of Sulphated and Unsulphated Keratan Sulphate Proteoglycans in Normal and Macular Dystrophy Cornea Using Sulphation Motif‐Specific Antibodies,” Histochemistry and Cell Biology 127, no. 1 (2007): 115–120, 10.1007/s00418-006-0228-8. PubMed DOI

Akama T. O., Nishida K., Nakayama J., et al., “Macular Corneal Dystrophy Type I and Type II Are Caused by Distinct Mutations in a New Sulphotransferase Gene,” Nature Genetics 26, no. 2 (2000): 237–241, 10.1038/79987. PubMed DOI

Williams D., Chung D. D., Hovakimyan A., Davtyan A., Glasgow B. J., and Aldave A. J., “Novel DCN Mutation in Armenian Family With Congenital Stromal Corneal Dystrophy,” Cornea 42, no. 4 (2023): 464–469. PubMed

Kubo E., Shibata S., Shibata T., Sasaki H., and Singh D. P., “Role of Decorin in the Lens and Ocular Diseases,” Cells 12, no. 1 (2022): 74, 10.3390/cells12010074. PubMed DOI PMC

Lee J. H., Ki C. S., Chung E. S., and Chung T. Y., “A Novel Decorin Gene Mutation in Congenital Hereditary Stromal Dystrophy: A Korean Family,” Korean Journal of Ophthalmology 26, no. 4 (2012): 301–305. PubMed PMC

Nicot A. S. and Laporte J., “Endosomal Phosphoinositides and Human Diseases,” Traffic 9, no. 8 (2008): 1240–1249. PubMed PMC

Gee J. A., Frausto R. F., Chung D. W., et al., “Identification of Novel PIKFYVE Gene Mutations Associated With Fleck Corneal Dystrophy,” Molecular Vision 21 (2015): 1093–1100. PubMed PMC

Aldave A. J., Rosenwasser G. O., Yellore V. S., et al., “Linkage of Posterior Amorphous Corneal Dystrophy to Chromosome 12q21.33 and Exclusion of Coding Region Mutations in KERA, LUM, DCN, and EPYC,” Investigative Ophthalmology & Visual Science 51, no. 8 (2010): 4006–4012, 10.1167/iovs.09-4067. PubMed DOI PMC

Basbus F. J., Cremona F. A., Lucero Saa F., Chiaradia P. A., Francipane L., and Menazzi S., “Posterior Amorphous Corneal Dystrophy: New Chromosomal Breakpoints in the Small Leucine‐Rich Proteoglycan‐Coding Region,” Cornea 41, no. 4 (2022): 491–495. PubMed

Gain P., Jullienne R., He Z., et al., “Global Survey of Corneal Transplantation and Eye Banking,” JAMA Ophthalmology 134, no. 2 (2016): 167–173. PubMed

Afshari N. A., R. P. Igo, Jr. , Morris N. J., et al., “Genome‐Wide Association Study Identifies Three Novel Loci in Fuchs Endothelial Corneal Dystrophy,” Nature Communications 8 (2017): 14898. PubMed PMC

Gorman B. R., Francis M., Nealon C. L., et al., “A Multi‐Ancestry GWAS of Fuchs Corneal Dystrophy Highlights the Contributions of Laminins, Collagen, and Endothelial Cell Regulation,” Communications Biology 7, no. 1 (2024): 418, 10.1038/s42003-024-06046-3. PubMed DOI PMC

Baratz K. H., Tosakulwong N., Ryu E., et al., “E2‐2 Protein and Fuchs's Corneal Dystrophy,” New England Journal of Medicine 363, no. 11 (2010): 1016–1024, 10.1056/NEJMoa1007064. PubMed DOI

Wieben E. D., Aleff R. A., Tosakulwong N., et al., “A Common Trinucleotide Repeat Expansion Within the Transcription Factor 4 (TCF4, E2‐2) Gene Predicts Fuchs Corneal Dystrophy,” PLoS One 7, no. 11 (2012): e49083. PubMed PMC

Bhattacharyya N., Chai N., Hafford‐Tear N. J., et al., “Deciphering Novel TCF4‐Driven Mechanisms Underlying a Common Triplet Repeat Expansion‐Mediated Disease,” PLoS Genetics 20, no. 5 (2024): e1011230. PubMed PMC

Riazuddin S. A., Zaghloul N. A., Al‐Saif A., et al., “Missense Mutations in TCF8 Cause Late‐Onset Fuchs Corneal Dystrophy and Interact With FCD4 on Chromosome 9p,” American Journal of Human Genetics 86, no. 1 (2010): 45–53. PubMed PMC

Vithana E. N., Morgan P. E., Ramprasad V., et al., “SLC4A11 Mutations in Fuchs Endothelial Corneal Dystrophy,” Human Molecular Genetics 17, no. 5 (2008): 656–666. PubMed

Riazuddin S. A., Parker D. S., McGlumphy E. J., et al., “Mutations in LOXHD1, a Recessive‐Deafness Locus, Cause Dominant Late‐Onset Fuchs Corneal Dystrophy,” American Journal of Human Genetics 90, no. 3 (2012): 533–539. PubMed PMC

Riazuddin S. A., Vasanth S., Katsanis N., and Gottsch J. D., “Mutations in AGBL1 Cause Dominant Late‐Onset Fuchs Corneal Dystrophy and Alter Protein‐Protein Interaction With TCF4,” American Journal of Human Genetics 93, no. 4 (2013): 758–764. PubMed PMC

Tsedilina T. R., Sharova E., Iakovets V., and Skorodumova L. O., “Systematic Review of SLC4A11, ZEB1, LOXHD1, and AGBL1 Variants in the Development of Fuchs' Endothelial Corneal Dystrophy,” Frontiers in Medicine (Lausanne) 10 (2023): 1153122. PubMed PMC

Gottsch J. D., Sundin O. H., Liu S. H., et al., “Inheritance of a Novel COL8A2 Mutation Defines a Distinct Early‐Onset Subtype of Fuchs Corneal Dystrophy,” Investigative Ophthalmology & Visual Science 46, no. 6 (2005): 1934–1939. PubMed

Mok J. W., Kim H. S., and Joo C. K., “Q455V Mutation in COL8A2 Is Associated With Fuchs' Corneal Dystrophy in Korean Patients,” Eye (London, England) 23, no. 4 (2009): 895–903. PubMed

Biswas S., Munier F. L., Yardley J., et al., “Missense Mutations in COL8A2, the Gene Encoding the alpha2 Chain of Type VIII Collagen, Cause Two Forms of Corneal Endothelial Dystrophy,” Human Molecular Genetics 10, no. 21 (2001): 2415–2423. PubMed

Jun A. S., Meng H., Ramanan N., et al., “An Alpha 2 Collagen VIII Transgenic Knock‐In Mouse Model of Fuchs Endothelial Corneal Dystrophy Shows Early Endothelial Cell Unfolded Protein Response and Apoptosis,” Human Molecular Genetics 21, no. 2 (2012): 384–393. PubMed PMC

Liskova P., Palos M., Hardcastle A. J., and Vincent A. L., “Further Genetic and Clinical Insights of Posterior Polymorphous Corneal Dystrophy 3,” JAMA Ophthalmology 131, no. 10 (2013): 1296–1303. PubMed

Evans C. J., Liskova P., Dudakova L., et al., “Identification of Six Novel Mutations in ZEB1 and Description of the Associated Phenotypes in Patients With Posterior Polymorphous Corneal Dystrophy 3,” Annals of Human Genetics 79, no. 1 (2015): 1–9. PubMed

Dudakova L., Stranecky V., Piherova L., et al., “Non‐Penetrance for Ocular Phenotype in Two Individuals Carrying Heterozygous Loss‐Of‐Function ZEB1 Alleles,” Genes (Basel) 12, no. 5 (2021): 677. PubMed PMC

Malhotra D., Jung M., Fecher‐Trost C., et al., “Defective Cell Adhesion Function of Solute Transporter, SLC4A11, in Endothelial Corneal Dystrophies,” Human Molecular Genetics 29, no. 1 (2020): 97–116. PubMed

Schmid E., Lisch W., Philipp W., et al., “A New, X‐Linked Endothelial Corneal Dystrophy,” American Journal of Ophthalmology 141, no. 3 (2006): 478–487. PubMed

Skalicka P., Dudakova L., Palos M., et al., “Paraproteinemic Keratopathy Associated With Monoclonal Gammopathy of Undetermined Significance (MGUS): Clinical Findings in Twelve Patients Including Recurrence After Keratoplasty,” Acta Ophthalmologica 97, no. 7 (2019): e987–e992. PubMed

Schmidt E. K., Mustonen T., Kiuru‐Enari S., Kivela T. T., and Atula S., “Finnish Gelsolin Amyloidosis Causes Significant Disease Burden but Does Not Affect Survival: FIN‐GAR Phase II Study,” Orphanet Journal of Rare Diseases 15, no. 1 (2020): 19. PubMed PMC

Hung C., Ayabe R. I., Wang C., Frausto R. F., and Aldave A. J., “Pre‐Descemet Corneal Dystrophy and X‐Linked Ichthyosis Associated With Deletion of Xp22.31 Containing the STS Gene,” Cornea 32, no. 9 (2013): 1283–1287. PubMed PMC

Black G. C. M., Ashworth J. L., and Sergouniotis P. I., Clinical Ophthalmic Genetics and Genomics (Elsevier Inc., 2022).

Liskova P., Hafford‐Tear N. J., Skalicka P., et al., “Posterior Corneal Vesicles Are Not Associated With the Genetic Variants That Cause Posterior Polymorphous Corneal Dystrophy,” Acta Ophthalmologica 100, no. 7 (2022): e1426–e1430. PubMed

Cunnusamy K., Bowman C. B., Beebe W., Gong X., Hogan R. N., and Mootha V. V., “Congenital Corneal Endothelial Dystrophies Resulting From Novel De Novo Mutations,” Cornea 35, no. 2 (2016): 281–285. PubMed PMC

Yousaf K., Naz S., Mushtaq A., et al., “Exome Sequencing Reveals SLC4A11 Variant Underlying Congenital Hereditary Endothelial Dystrophy (CHED2) Misdiagnosed as Congenital Glaucoma,” Genes (Basel) 14, no. 2 (2023): 310. PubMed PMC

Dudakova L., Skalicka P., Davidson A. E., and Liskova P., “Coincidental Occurrence of Schnyder Corneal Dystrophy and Posterior Polymorphous Corneal Dystrophy Type 3,” Cornea 38, no. 6 (2019): 758–760. PubMed

Bouyacoub Y., Falfoul Y., Ouederni M., et al., “Granular Type I Corneal Dystrophy in a Large Consanguineous Tunisian Family With Homozygous p.R124S Mutation in the TGFBI Gene,” Ophthalmic Genetics 40, no. 4 (2019): 329–337. PubMed

Yamada N., Chikama T. I., Morishige N., et al., “Homozygous Mutation (L527R) of TGFBI in an Individual With Lattice Corneal Dystrophy,” British Journal of Ophthalmology 89, no. 6 (2005): 771–773. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace