Posterior corneal vesicles are not associated with the genetic variants that cause posterior polymorphous corneal dystrophy

. 2022 Nov ; 100 (7) : e1426-e1430. [epub] 20220217

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35174971

Grantová podpora
UCL Institute of Ophthalmology
National Institute for Health Research
GACR 20-19278S Charles University
Medical Diagnostics and Basic Medical Sciences
MR/S031820/1 Medical Research Council - United Kingdom
UKRI Future Leader Fellowship
Moorfields Eye Charity

PURPOSE: Posterior corneal vesicles (PCVs) have clinical features that are similar to posterior polymorphous corneal dystrophy (PPCD). To help determine whether there is a shared genetic basis, we screened 38 individuals with PCVs for changes in the three genes identified as causative for PPCD. METHODS: We prospectively recruited patients for this study. We examined all individuals clinically, with their first-degree relatives when available. We used a combination of Sanger and exome sequencing to screen regulatory regions of OVOL2 and GRHL2, and the entire ZEB1 coding sequence. RESULTS: The median age at examination was 37.5 years (range 4.7-84.0 years), 20 (53%) were male and in 19 (50%) the PCVs were unilateral. Most individuals were discharged to optometric review, but five had follow-up for a median of 12 years (range 5-13 years) with no evidence of progression. In cases with unilateral PCVs, there was statistically significant evidence that the change in the affected eye was associated with a lower endothelial cell density (p = 0.0003), greater central corneal thickness (p = 0.0277) and a steeper mean keratometry (p = 0.0034), but not with a higher keratometric astigmatism or a reduced LogMAR visual acuity. First-degree relatives of 13 individuals were available for examination, and in 3 (23%), PCVs were identified. No possibly pathogenic variants were identified in the PPCD-associated genes screened. CONCLUSION: We found no evidence that PCVs share the same genetic background as PPCD. In contrast to PPCD, we confirm that PCVs is a mild, non-progressive condition with no requirement for long-term review. However, subsequent cataract surgery can lead to corneal oedema.

Zobrazit více v PubMed

Aldave AJ, Ann LB, Frausto RF, Nguyen CK, Yu F & Raber IM (2013): Classification of posterior polymorphous corneal dystrophy as a corneal ectatic disorder following confirmation of associated significant corneal steepening. JAMA Ophthalmol 131: 1583-1590.

Aldave AJ, Yellore VS, Yu F et al. (2007): Posterior polymorphous corneal dystrophy is associated with TCF8 gene mutations and abdominal hernia. Am J Med Genet A 143A: 2549-2556.

Cibis GW, Krachmer JA, Phelps CD & Weingeist TA (1977): The clinical spectrum of posterior polymorphous dystrophy. Arch Ophthalmol 95: 1529-1537.

Cibis GW & Tripathi RC (1982): The differential diagnosis of Descemet's tears (Haab's striae) and posterior polymorpous dystrophy bands. A clinicopathologic study. Ophthalmology 89: 614-620.

Davidson AE, Liskova P, Evans CJ et al. (2016): Autosomal-dominant corneal endothelial dystrophies CHED1 and PPCD1 are allelic disorders caused by non-coding mutations in the promoter of OVOL2. Am J Hum Genet 98: 75-89.

Dudakova L, Evans CJ, Pontikos N et al. (2019): The utility of massively parallel sequencing for posterior polymorphous corneal dystrophy type 3 molecular diagnosis. Exp Eye Res 182: 160-166.

Dudakova L, Stranecky V, Piherova L et al. (2021): Non-penetrance for ocular phenotype in two individuals carrying heterozygous loss-of-function ZEB1 alleles. Genes (Basel) 12: 677-684.

Evans CJ, Liskova P, Dudakova L et al. (2015): Identification of six novel mutations in ZEB1 and description of the associated phenotypes in patients with posterior polymorphous corneal dystrophy 3. Ann Hum Genet 79: 1-9.

Harada T, Tanaka H, Ikema T, Asakura K, Miura M & Ozeki Y (1990): Specular microscopic observation of posterior corneal vesicles. Ophthalmologica 201: 122-127.

Henriquez AS, Kenyon KR, Dohlman CH, Boruchoff SA, Forstot SL, Meyer RF & Hanninen LA (1984): Morphologic characteristics of posterior polymorphous dystrophy. A study of nine corneas and review of the literature. Surv Ophthalmol 29: 139-147.

Jirsova K, Merjava S, Martincova R, Gwilliam R, Ebenezer ND, Liskova P & Filipec M (2007): Immunohistochemical characterization of cytokeratins in the abnormal corneal endothelium of posterior polymorphous corneal dystrophy patients. Exp Eye Res 84: 680-686.

Kitazawa K, Hikichi T, Nakamura T et al. (2016): OVOL2 maintains the transcriptional program of human corneal epithelium by suppressing epithelial-to-mesenchymal transition. Cell Rep 15: 1359-1368.

Krachmer JH (1985): Posterior polymorphous corneal dystrophy: a disease characterized by epithelial-like endothelial cells which influence management and prognosis. Trans Am Ophthalmol Soc 83: 413-475.

Krafchak CM, Pawar H, Moroi SE et al. (2005): Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. Am J Hum Genet 77: 694-708.

Laganowski HC, Sherrard ES & Muir MG (1991): The posterior corneal surface in posterior polymorphous dystrophy: a specular microscopical study. Cornea 10: 224-232.

Levenson JE, Chandler JW & Kaufman HE (1973): Affected asymptomatic relatives in congenital hereditary endothelial dystrophy. Am J Ophthalmol 76: 967-971.

Liskova P, Dudakova L, Evans CJ et al. (2018): Ectopic GRHL2 expression due to non-coding mutations promotes cell state transition and causes posterior polymorphous corneal dystrophy 4. Am J Hum Genet 102: 447-459.

Liskova P, Palos M, Hardcastle AJ & Vincent AL (2013): Further genetic and clinical insights of posterior polymorphous corneal dystrophy 3. JAMA Ophthalmol 131: 1296-1303.

Liskova P, Tuft SJ, Gwilliam R et al. (2007): Novel mutations in the ZEB1 gene identified in Czech and British patients with posterior polymorphous corneal dystrophy. Hum Mutat 28: 638.

Malbran ES (1972): Corneal dystrophies: a clinical, pathological, and surgical approach. 28 Edward Jackson Memorial Lecture. Am J Ophthalmol 74: 771-809.

McKenna A, Hanna M, Banks E et al. (2010): The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297-1303.

Noguchi A, Okumura N, Sotozono C & Kinoshita S (2018): Effect of posterior corneal vesicles on corneal endothelial cell density and anisometropic amblyopia. Cornea 37: 813-817.

Pardos GJ, Krachmer JH & Mannis MJ (1981): Posterior corneal vesicles. Arch Ophthalmol 99: 1573-1577.

Patel DV, Grupcheva CN & McGhee CN (2005): In vivo confocal microscopy of posterior polymorphous dystrophy. Cornea 24: 550-554.

Raber IM, Fintelmann R, Chhabra S, Ribeiro MP, Eagle RC Jr & Orlin SE (2011): Posterior polymorphous dystrophy associated with nonkeratoconic steep corneal curvatures. Cornea 30: 1120-1124.

Shiraishi A, Zheng X, Sakane Y, Hara Y & Hayashi Y (2016): In vivo confocal microscopic observations of eyes diagnosed with posterior corneal vesicles. Jpn J Ophthalmol 60: 425-432.

Vincent AL, Niederer RL, Richards A, Karolyi B, Patel DV & McGhee CN (2009): Phenotypic characterisation and ZEB1 mutational analysis in posterior polymorphous corneal dystrophy in a New Zealand population. Mol Vis 15: 2544-2553.

Waring GO 3rd, Rodrigues MM & Laibson PR (1978): Corneal dystrophies. II Endothelial dystrophies. Surv Ophthalmol 23: 147-168.

Watanabe R, Nakazawa T & Fuse N (2010): Observation of posterior corneal vesicles with in vivo confocal microscopy and anterior segment OCT. Clin Ophthalmol 4: 1243-1247.

Weiss JS, Møller HU, Aldave AJ et al. (2015): IC3D classification of corneal dystrophies--edition 2. Cornea 34: 117-159.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...