Disruption of OVOL2 Distal Regulatory Elements as a Possible Mechanism Implicated in Corneal Endothelial Dystrophy
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40225920
PubMed Central
PMC11919061
DOI
10.1155/2024/4450082
Knihovny.cz E-zdroje
- MeSH
- dědičné dystrofie rohovky * genetika diagnóza MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- lidské chromozomy, pár 3 genetika MeSH
- novorozenec MeSH
- regulační oblasti nukleových kyselin * MeSH
- rodokmen MeSH
- transkripční faktory * genetika MeSH
- translokace genetická MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Ovol2 protein, human MeSH Prohlížeč
- transkripční faktory * MeSH
The genetic architecture of corneal endothelial dystrophies remains unknown in a substantial number of affected individuals. The proband investigated in the current study was diagnosed in the neonatal period with bilateral corneal opacification due to primary endothelial cell dysfunction. Neither his parents nor his sister had signs of corneal disease. Conventional karyotyping revealed a de novo translocation involving chromosomes 3 and 20, t(3;20)(q25;p11-12). Following genome and targeted Sanger sequencing analysis, the breakpoints were mapped at the nucleotide level. Notably, the breakpoint on chromosome 20 was identified to lie within the same topologically associated domain (TAD) as corneal endothelial dystrophy-associated gene OVOL2, and it is predicted to disrupt distal enhancers. The breakpoint at chromosome 3 is located within intron 2 of PFN2, which is currently not associated with any human disease. Further interrogation of the proband's genome failed to identify any additional potentially pathogenic variants in corneal endothelial dystrophy-associated genes. Disruption of a candidate cis-regulatory element and/or positional effects induced by translocation of OVOL2 to a novel genomic context may lead to an aberrant OVOL2 expression, a previously characterized disease mechanism of corneal endothelial dystrophy. Further research is necessary to explore how disruption of regulatory elements may elucidate genetically unsolved corneal endothelial dystrophies.
Zobrazit více v PubMed
Schmid E., Lisch W., Philipp W., et al. A new, X-linked endothelial corneal dystrophy. American Journal of Ophthalmology . 2006;141(3):478–487.e3. doi: 10.1016/j.ajo.2005.10.020. PubMed DOI
Dudakova L., Evans C. J., Pontikos N., et al. The utility of massively parallel sequencing for posterior polymorphous corneal dystrophy type 3 molecular diagnosis. Experimental Eye Research . 2019;182:160–166. doi: 10.1016/j.exer.2019.03.002. PubMed DOI
Liskova P., Evans C. J., Davidson A. E., et al. Heterozygous deletions at the ZEB1 locus verify haploinsufficiency as the mechanism of disease for posterior polymorphous corneal dystrophy type 3. European Journal of Human Genetics . 2016;24(7):985–991. doi: 10.1038/ejhg.2015.232. PubMed DOI PMC
Evans C. J., Liskova P., Dudakova L., et al. Identification of six novel mutations in ZEB1 and description of the associated phenotypes in patients with posterior polymorphous corneal dystrophy 3. Annals of Human Genetics . 2015;79(1):1–9. doi: 10.1111/ahg.12090. PubMed DOI
Cunnusamy K., Bowman C. B., Beebe W., Gong X., Hogan R. N., Mootha V. V. Congenital corneal endothelial dystrophies resulting from novel de novo mutations. Cornea . 2016;35(2):281–285. doi: 10.1097/ICO.0000000000000670. PubMed DOI PMC
Cibis G. W., Krachmer J. A., Phelps C. D., Weingeist T. A. The clinical spectrum of posterior polymorphous dystrophy. Archives of Ophthalmology . 1977;95(9):1529–1537. doi: 10.1001/archopht.1977.04450090051002. PubMed DOI
Davidson A. E., Liskova P., Evans C. J., et al. Autosomal-dominant corneal endothelial dystrophies CHED1 and PPCD1 are allelic disorders caused by non-coding mutations in the promoter of OVOL2. The American Journal of Human Genetics . 2016;98(1):75–89. doi: 10.1016/j.ajhg.2015.11.018. PubMed DOI PMC
Liskova P., Dudakova L., Evans C. J., et al. Ectopic GRHL2 expression due to non-coding mutations promotes cell state transition and causes posterior polymorphous corneal dystrophy 4. American Journal of Human Genetics . 2018;102(3):447–459. doi: 10.1016/j.ajhg.2018.02.002. PubMed DOI PMC
Krafchak C. M., Pawar H., Moroi S. E., et al. Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. American Journal of Human Genetics . 2005;77(5):694–708. doi: 10.1086/497348. PubMed DOI PMC
Janeschitz-Kriegl L., Kamdar D., Quinodoz M., et al. c.-61G>A in OVOL2 is a pathogenic 5′ untranslated region variant causing posterior polymorphous corneal dystrophy 1. Cornea . 2022;41:89–94. doi: 10.1097/ICO.0000000000002843. PubMed DOI
Brejchova K., Dudakova L., Skalicka P., et al. IPSC-derived corneal endothelial-like cells act as an appropriate model system to assess the impact of SLC4A11 variants on pre-mRNA splicing. Investigative Ophthalmology & Visual Science . 2019;60(8):3084–3090. doi: 10.1167/iovs.19-26930. PubMed DOI PMC
Ramprasad V. L., Ebenezer N. D., Aung T., et al. Novel SLC4A11 mutations in patients with recessive congenital hereditary endothelial dystrophy (CHED2) Human Mutation . 2007;28(5):522–523. doi: 10.1002/humu.9487. PubMed DOI
Mehta J. S., Hemadevi B., Vithana E. N., et al. Absence of phenotype-genotype correlation of patients expressing mutations in the SLC4A11 gene. Cornea . 2010;29(3):302–306. doi: 10.1097/ICO.0b013e3181ae9038. PubMed DOI
Siddiqui S., Zenteno J. C., Rice A., et al. Congenital hereditary endothelial dystrophy caused by SLC4A11 mutations progresses to Harboyan syndrome. Cornea . 2014;33(3):247–251. doi: 10.1097/ICO.0000000000000041. PubMed DOI PMC
Liskova P., Dudakova L., Tesar V., et al. Detailed assessment of renal function in a proband with Harboyan syndrome caused by a novel homozygous SLC4A11 nonsense mutation. Ophthalmic Research . 2015;53(1):30–35. doi: 10.1159/000365109. PubMed DOI
Ogando D. G., Jalimarada S. S., Zhang W., Vithana E. N., Bonanno J. A. SLC4A11 is an EIPA-sensitive Na+ permeable pHi regulator. American Journal of Physiology-Cell Physiology . 2013;305(7):C716–C727. doi: 10.1152/ajpcell.00056.2013. PubMed DOI PMC
Vithana E. N., Morgan P., Sundaresan P., et al. Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2) Nature Genetics . 2006;38(7):755–757. doi: 10.1038/ng1824. PubMed DOI
Vilas G. L., Loganathan S. K., Liu J., et al. Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases. Human Molecular Genetics . 2013;22(22):4579–4590. doi: 10.1093/hmg/ddt307. PubMed DOI PMC
Malhotra D., Jung M., Fecher-Trost C., et al. Defective cell adhesion function of solute transporter, SLC4A11, in endothelial corneal dystrophies. Human Molecular Genetics . 2020;29(1):97–116. doi: 10.1093/hmg/ddz259. PubMed DOI
Nord A. S., Blow M. J., Attanasio C., et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell . 2013;155(7):1521–1531. doi: 10.1016/j.cell.2013.11.033. PubMed DOI PMC
Maston G. A., Evans S. K., Green M. R. Transcriptional regulatory elements in the human genome. Annual Review of Genomics and Human Genetics . 2006;7(1):29–59. doi: 10.1146/annurev.genom.7.080505.115623. PubMed DOI
Dixon J. R., Selvaraj S., Yue F., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature . 2012;485(7398):376–380. doi: 10.1038/nature11082. PubMed DOI PMC
Ibrahim D. M., Mundlos S. Three-dimensional chromatin in disease: what holds us together and what drives us apart? Current Opinion in Cell Biology . 2020;64:1–9. doi: 10.1016/j.ceb.2020.01.003. PubMed DOI
Van de Sompele S., Small K. W., Cicekdal M. B., et al. Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy. The American Journal of Human Genetics . 2022;109(11):2029–2048. doi: 10.1016/j.ajhg.2022.09.013. PubMed DOI PMC
Liskova P., Hafford-Tear N. J., Skalicka P., et al. Posterior corneal vesicles are not associated with the genetic variants that cause posterior polymorphous corneal dystrophy. Acta Ophthalmologica . 2022;100(7):e1426–e1430. doi: 10.1111/aos.15114. PubMed DOI
Ensenberger M. G., Thompson J., Hill B., et al. Developmental validation of the PowerPlex 16 HS system: an improved 16-locus fluorescent STR multiplex. Forensic Science International. Genetics . 2010;4(4):257–264. doi: 10.1016/j.fsigen.2009.10.007. PubMed DOI
McKenna A., Hanna M., Banks E., et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research . 2010;20(9):1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC
Karczewski K. J., Francioli L. C., Tiao G., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature . 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC
Layer R. M., Chiang C., Quinlan A. R., Hall I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biology . 2014;15(6):p. R84. doi: 10.1186/gb-2014-15-6-r84. PubMed DOI PMC
Rausch T., Zichner T., Schlattl A., Stutz A. M., Benes V., Korbel J. O. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics . 2012;28(18):i333–i339. doi: 10.1093/bioinformatics/bts378. PubMed DOI PMC
Chen X., Schulz-Trieglaff O., Shaw R., et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics . 2016;32(8):1220–1222. doi: 10.1093/bioinformatics/btv710. PubMed DOI
Robinson J. T., Thorvaldsdottir H., Winckler W., et al. Integrative genomics viewer. Nature Biotechnology . 2011;29(1):24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC
Yang D., Jang I., Choi J., et al. 3DIV: a 3D-genome interaction viewer and database. Nucleic Acids Research . 2018;46(D1):D52–D57. doi: 10.1093/nar/gkx1017. PubMed DOI PMC
Shin H., Shi Y., Dai C., et al. TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Research . 2016;44(7, article e70) doi: 10.1093/nar/gkv1505. PubMed DOI PMC
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature . 2012;489(7414):57–74. doi: 10.1038/nature11247. PubMed DOI PMC
Fishilevich S., Nudel R., Rappaport N., et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database . 2017;2017 doi: 10.1093/database/bax028. PubMed DOI PMC
MacDonald J. R., Ziman R., Yuen R. K., Feuk L., Scherer S. W. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Research . 2014;42(D1):D986–D992. doi: 10.1093/nar/gkt958. PubMed DOI PMC
Collins R. L., Brand H., Karczewski K. J., et al. A structural variation reference for medical and population genetics. Nature . 2020;581(7809):444–451. doi: 10.1038/s41586-020-2287-8. PubMed DOI PMC
Yuasa K., Takeda S., Hijikata T. A conserved regulatory element located far downstream of the gls locus modulates gls expression through chromatin loop formation during myogenesis. FEBS Letters . 2012;586(19):3464–3470. doi: 10.1016/j.febslet.2012.07.074. PubMed DOI
Kimura-Yoshida C., Kitajima K., Oda-Ishii I., et al. Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development . 2004;131(1):57–71. doi: 10.1242/dev.00877. PubMed DOI
Nischal K. K., Naor J., Jay V., MacKeen L. D., Rootman D. S. Clinicopathological correlation of congenital corneal opacification using ultrasound biomicroscopy. The British Journal of Ophthalmology . 2002;86(1):62–69. doi: 10.1136/bjo.86.1.62. PubMed DOI PMC
Ozyol E., Ozyol P. Comparison of central corneal thickness with four noncontact devices: an agreement analysis of swept-source technology. Indian Journal of Ophthalmology . 2017;65(6):461–465. doi: 10.4103/ijo.IJO_618_16. PubMed DOI PMC
Tideman J. W. L., Polling J. R., Vingerling J. R., et al. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmologica . 2018;96(3):301–309. doi: 10.1111/aos.13603. PubMed DOI PMC
Lopez de la Fuente C., Sanchez-Cano A., Segura F., Pinilla I. Comparison of anterior segment measurements obtained by three different devices in healthy eyes. BioMed Research International . 2014;2014:8. doi: 10.1155/2014/498080.498080 PubMed DOI PMC
den Dunnen J. T., Dalgleish R., Maglott D. R., et al. HGVS recommendations for the description of sequence variants: 2016 update. Human Mutation . 2016;37(6):564–569. doi: 10.1002/humu.22981. PubMed DOI
Tuft S. J., Coster D. J. The corneal endothelium. Eye . 1990;4(3):389–424. doi: 10.1038/eye.1990.53. PubMed DOI
Fuller Z. L., Berg J. J., Mostafavi H., Sella G., Przeworski M. Measuring intolerance to mutation in human genetics. Nature Genetics . 2019;51(5):772–776. doi: 10.1038/s41588-019-0383-1. PubMed DOI PMC
Kirkness C. M., McCartney A., Rice N. S., Garner A., Steele A. D. Congenital hereditary corneal oedema of Maumenee: its clinical features, management, and pathology. The British Journal of Ophthalmology . 1987;71(2):130–144. doi: 10.1136/bjo.71.2.130. PubMed DOI PMC
Allou L., Mundlos S. Disruption of regulatory domains and novel transcripts as disease-causing mechanisms. BioEssays . 2023;45(10, article e2300010) doi: 10.1002/bies.202300010. PubMed DOI