Disruption of OVOL2 Distal Regulatory Elements as a Possible Mechanism Implicated in Corneal Endothelial Dystrophy

. 2024 ; 2024 () : 4450082. [epub] 20240104

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40225920

The genetic architecture of corneal endothelial dystrophies remains unknown in a substantial number of affected individuals. The proband investigated in the current study was diagnosed in the neonatal period with bilateral corneal opacification due to primary endothelial cell dysfunction. Neither his parents nor his sister had signs of corneal disease. Conventional karyotyping revealed a de novo translocation involving chromosomes 3 and 20, t(3;20)(q25;p11-12). Following genome and targeted Sanger sequencing analysis, the breakpoints were mapped at the nucleotide level. Notably, the breakpoint on chromosome 20 was identified to lie within the same topologically associated domain (TAD) as corneal endothelial dystrophy-associated gene OVOL2, and it is predicted to disrupt distal enhancers. The breakpoint at chromosome 3 is located within intron 2 of PFN2, which is currently not associated with any human disease. Further interrogation of the proband's genome failed to identify any additional potentially pathogenic variants in corneal endothelial dystrophy-associated genes. Disruption of a candidate cis-regulatory element and/or positional effects induced by translocation of OVOL2 to a novel genomic context may lead to an aberrant OVOL2 expression, a previously characterized disease mechanism of corneal endothelial dystrophy. Further research is necessary to explore how disruption of regulatory elements may elucidate genetically unsolved corneal endothelial dystrophies.

Zobrazit více v PubMed

Schmid E., Lisch W., Philipp W., et al. A new, X-linked endothelial corneal dystrophy. American Journal of Ophthalmology . 2006;141(3):478–487.e3. doi: 10.1016/j.ajo.2005.10.020. PubMed DOI

Dudakova L., Evans C. J., Pontikos N., et al. The utility of massively parallel sequencing for posterior polymorphous corneal dystrophy type 3 molecular diagnosis. Experimental Eye Research . 2019;182:160–166. doi: 10.1016/j.exer.2019.03.002. PubMed DOI

Liskova P., Evans C. J., Davidson A. E., et al. Heterozygous deletions at the ZEB1 locus verify haploinsufficiency as the mechanism of disease for posterior polymorphous corneal dystrophy type 3. European Journal of Human Genetics . 2016;24(7):985–991. doi: 10.1038/ejhg.2015.232. PubMed DOI PMC

Evans C. J., Liskova P., Dudakova L., et al. Identification of six novel mutations in ZEB1 and description of the associated phenotypes in patients with posterior polymorphous corneal dystrophy 3. Annals of Human Genetics . 2015;79(1):1–9. doi: 10.1111/ahg.12090. PubMed DOI

Cunnusamy K., Bowman C. B., Beebe W., Gong X., Hogan R. N., Mootha V. V. Congenital corneal endothelial dystrophies resulting from novel de novo mutations. Cornea . 2016;35(2):281–285. doi: 10.1097/ICO.0000000000000670. PubMed DOI PMC

Cibis G. W., Krachmer J. A., Phelps C. D., Weingeist T. A. The clinical spectrum of posterior polymorphous dystrophy. Archives of Ophthalmology . 1977;95(9):1529–1537. doi: 10.1001/archopht.1977.04450090051002. PubMed DOI

Davidson A. E., Liskova P., Evans C. J., et al. Autosomal-dominant corneal endothelial dystrophies CHED1 and PPCD1 are allelic disorders caused by non-coding mutations in the promoter of OVOL2. The American Journal of Human Genetics . 2016;98(1):75–89. doi: 10.1016/j.ajhg.2015.11.018. PubMed DOI PMC

Liskova P., Dudakova L., Evans C. J., et al. Ectopic GRHL2 expression due to non-coding mutations promotes cell state transition and causes posterior polymorphous corneal dystrophy 4. American Journal of Human Genetics . 2018;102(3):447–459. doi: 10.1016/j.ajhg.2018.02.002. PubMed DOI PMC

Krafchak C. M., Pawar H., Moroi S. E., et al. Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. American Journal of Human Genetics . 2005;77(5):694–708. doi: 10.1086/497348. PubMed DOI PMC

Janeschitz-Kriegl L., Kamdar D., Quinodoz M., et al. c.-61G>A in OVOL2 is a pathogenic 5′ untranslated region variant causing posterior polymorphous corneal dystrophy 1. Cornea . 2022;41:89–94. doi: 10.1097/ICO.0000000000002843. PubMed DOI

Brejchova K., Dudakova L., Skalicka P., et al. IPSC-derived corneal endothelial-like cells act as an appropriate model system to assess the impact of SLC4A11 variants on pre-mRNA splicing. Investigative Ophthalmology & Visual Science . 2019;60(8):3084–3090. doi: 10.1167/iovs.19-26930. PubMed DOI PMC

Ramprasad V. L., Ebenezer N. D., Aung T., et al. Novel SLC4A11 mutations in patients with recessive congenital hereditary endothelial dystrophy (CHED2) Human Mutation . 2007;28(5):522–523. doi: 10.1002/humu.9487. PubMed DOI

Mehta J. S., Hemadevi B., Vithana E. N., et al. Absence of phenotype-genotype correlation of patients expressing mutations in the SLC4A11 gene. Cornea . 2010;29(3):302–306. doi: 10.1097/ICO.0b013e3181ae9038. PubMed DOI

Siddiqui S., Zenteno J. C., Rice A., et al. Congenital hereditary endothelial dystrophy caused by SLC4A11 mutations progresses to Harboyan syndrome. Cornea . 2014;33(3):247–251. doi: 10.1097/ICO.0000000000000041. PubMed DOI PMC

Liskova P., Dudakova L., Tesar V., et al. Detailed assessment of renal function in a proband with Harboyan syndrome caused by a novel homozygous SLC4A11 nonsense mutation. Ophthalmic Research . 2015;53(1):30–35. doi: 10.1159/000365109. PubMed DOI

Ogando D. G., Jalimarada S. S., Zhang W., Vithana E. N., Bonanno J. A. SLC4A11 is an EIPA-sensitive Na+ permeable pHi regulator. American Journal of Physiology-Cell Physiology . 2013;305(7):C716–C727. doi: 10.1152/ajpcell.00056.2013. PubMed DOI PMC

Vithana E. N., Morgan P., Sundaresan P., et al. Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2) Nature Genetics . 2006;38(7):755–757. doi: 10.1038/ng1824. PubMed DOI

Vilas G. L., Loganathan S. K., Liu J., et al. Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases. Human Molecular Genetics . 2013;22(22):4579–4590. doi: 10.1093/hmg/ddt307. PubMed DOI PMC

Malhotra D., Jung M., Fecher-Trost C., et al. Defective cell adhesion function of solute transporter, SLC4A11, in endothelial corneal dystrophies. Human Molecular Genetics . 2020;29(1):97–116. doi: 10.1093/hmg/ddz259. PubMed DOI

Nord A. S., Blow M. J., Attanasio C., et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell . 2013;155(7):1521–1531. doi: 10.1016/j.cell.2013.11.033. PubMed DOI PMC

Maston G. A., Evans S. K., Green M. R. Transcriptional regulatory elements in the human genome. Annual Review of Genomics and Human Genetics . 2006;7(1):29–59. doi: 10.1146/annurev.genom.7.080505.115623. PubMed DOI

Dixon J. R., Selvaraj S., Yue F., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature . 2012;485(7398):376–380. doi: 10.1038/nature11082. PubMed DOI PMC

Ibrahim D. M., Mundlos S. Three-dimensional chromatin in disease: what holds us together and what drives us apart? Current Opinion in Cell Biology . 2020;64:1–9. doi: 10.1016/j.ceb.2020.01.003. PubMed DOI

Van de Sompele S., Small K. W., Cicekdal M. B., et al. Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy. The American Journal of Human Genetics . 2022;109(11):2029–2048. doi: 10.1016/j.ajhg.2022.09.013. PubMed DOI PMC

Liskova P., Hafford-Tear N. J., Skalicka P., et al. Posterior corneal vesicles are not associated with the genetic variants that cause posterior polymorphous corneal dystrophy. Acta Ophthalmologica . 2022;100(7):e1426–e1430. doi: 10.1111/aos.15114. PubMed DOI

Ensenberger M. G., Thompson J., Hill B., et al. Developmental validation of the PowerPlex 16 HS system: an improved 16-locus fluorescent STR multiplex. Forensic Science International. Genetics . 2010;4(4):257–264. doi: 10.1016/j.fsigen.2009.10.007. PubMed DOI

McKenna A., Hanna M., Banks E., et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research . 2010;20(9):1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC

Karczewski K. J., Francioli L. C., Tiao G., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature . 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC

Layer R. M., Chiang C., Quinlan A. R., Hall I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biology . 2014;15(6):p. R84. doi: 10.1186/gb-2014-15-6-r84. PubMed DOI PMC

Rausch T., Zichner T., Schlattl A., Stutz A. M., Benes V., Korbel J. O. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics . 2012;28(18):i333–i339. doi: 10.1093/bioinformatics/bts378. PubMed DOI PMC

Chen X., Schulz-Trieglaff O., Shaw R., et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics . 2016;32(8):1220–1222. doi: 10.1093/bioinformatics/btv710. PubMed DOI

Robinson J. T., Thorvaldsdottir H., Winckler W., et al. Integrative genomics viewer. Nature Biotechnology . 2011;29(1):24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC

Yang D., Jang I., Choi J., et al. 3DIV: a 3D-genome interaction viewer and database. Nucleic Acids Research . 2018;46(D1):D52–D57. doi: 10.1093/nar/gkx1017. PubMed DOI PMC

Shin H., Shi Y., Dai C., et al. TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Research . 2016;44(7, article e70) doi: 10.1093/nar/gkv1505. PubMed DOI PMC

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature . 2012;489(7414):57–74. doi: 10.1038/nature11247. PubMed DOI PMC

Fishilevich S., Nudel R., Rappaport N., et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database . 2017;2017 doi: 10.1093/database/bax028. PubMed DOI PMC

MacDonald J. R., Ziman R., Yuen R. K., Feuk L., Scherer S. W. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Research . 2014;42(D1):D986–D992. doi: 10.1093/nar/gkt958. PubMed DOI PMC

Collins R. L., Brand H., Karczewski K. J., et al. A structural variation reference for medical and population genetics. Nature . 2020;581(7809):444–451. doi: 10.1038/s41586-020-2287-8. PubMed DOI PMC

Yuasa K., Takeda S., Hijikata T. A conserved regulatory element located far downstream of the gls locus modulates gls expression through chromatin loop formation during myogenesis. FEBS Letters . 2012;586(19):3464–3470. doi: 10.1016/j.febslet.2012.07.074. PubMed DOI

Kimura-Yoshida C., Kitajima K., Oda-Ishii I., et al. Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development . 2004;131(1):57–71. doi: 10.1242/dev.00877. PubMed DOI

Nischal K. K., Naor J., Jay V., MacKeen L. D., Rootman D. S. Clinicopathological correlation of congenital corneal opacification using ultrasound biomicroscopy. The British Journal of Ophthalmology . 2002;86(1):62–69. doi: 10.1136/bjo.86.1.62. PubMed DOI PMC

Ozyol E., Ozyol P. Comparison of central corneal thickness with four noncontact devices: an agreement analysis of swept-source technology. Indian Journal of Ophthalmology . 2017;65(6):461–465. doi: 10.4103/ijo.IJO_618_16. PubMed DOI PMC

Tideman J. W. L., Polling J. R., Vingerling J. R., et al. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmologica . 2018;96(3):301–309. doi: 10.1111/aos.13603. PubMed DOI PMC

Lopez de la Fuente C., Sanchez-Cano A., Segura F., Pinilla I. Comparison of anterior segment measurements obtained by three different devices in healthy eyes. BioMed Research International . 2014;2014:8. doi: 10.1155/2014/498080.498080 PubMed DOI PMC

den Dunnen J. T., Dalgleish R., Maglott D. R., et al. HGVS recommendations for the description of sequence variants: 2016 update. Human Mutation . 2016;37(6):564–569. doi: 10.1002/humu.22981. PubMed DOI

Tuft S. J., Coster D. J. The corneal endothelium. Eye . 1990;4(3):389–424. doi: 10.1038/eye.1990.53. PubMed DOI

Fuller Z. L., Berg J. J., Mostafavi H., Sella G., Przeworski M. Measuring intolerance to mutation in human genetics. Nature Genetics . 2019;51(5):772–776. doi: 10.1038/s41588-019-0383-1. PubMed DOI PMC

Kirkness C. M., McCartney A., Rice N. S., Garner A., Steele A. D. Congenital hereditary corneal oedema of Maumenee: its clinical features, management, and pathology. The British Journal of Ophthalmology . 1987;71(2):130–144. doi: 10.1136/bjo.71.2.130. PubMed DOI PMC

Allou L., Mundlos S. Disruption of regulatory domains and novel transcripts as disease-causing mechanisms. BioEssays . 2023;45(10, article e2300010) doi: 10.1002/bies.202300010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...