Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36243009
PubMed Central
PMC9674966
DOI
10.1016/j.ajhg.2022.09.013
PII: S0002-9297(22)00446-3
Knihovny.cz E-zdroje
- Klíčová slova
- IRX1, North Carolina macular dystrophy, NCMD, PRDM13, UMI-4C, cis-regulatory elements, CREs, enhanceropathy, human retina, multi-omics, non-coding single-nucleotide variants, SNVs, whole-genome sequencing,
- MeSH
- dědičné dystrofie rohovky * MeSH
- dospělí MeSH
- lidé MeSH
- optická koherentní tomografie * MeSH
- retina metabolismus MeSH
- rodokmen MeSH
- Xenopus laevis genetika MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.
Center for Medical Genetics Antwerp University Hospital Antwerp Belgium
Department of Ophthalmology Ghent University Hospital Ghent Belgium
Department of Ophthalmology SUNY Downstate Medical Center University Brooklyn New York USA
Department of Ophthalmology University Hospitals Leuven Leuven Belgium
Division of Molecular Medicine Leeds Institute of Medical Research University of Leeds Leeds UK
Macula and Retina Institute Los Angeles and Glendale California USA
University of Lausanne Jules Gonin Eye Hospital Lausanne Switzerland
Zobrazit více v PubMed
Farwell K.D., Shahmirzadi L., El-Khechen D., Powis Z., Chao E.C., Tippin Davis B., Baxter R.M., Zeng W., Mroske C., Parra M.C., et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: Results from 500 unselected families with undiagnosed genetic conditions. Genet. Med. 2015;17:578–586. PubMed
Haer-Wigman L., van Zelst-Stams W.A., Pfundt R., van den Born L.I., Klaver C.C., Verheij J.B., Hoyng C.B., Breuning M.H., Boon C.J., Kievit A.J., et al. Diagnostic exome sequencing in 266 Dutch patients with visual impairment. Eur. J. Hum. Genet. 2017;25:591–599. PubMed PMC
Arts P., Simons A., Alzahrani M.S., Yilmaz E., Alidrissi E., van Aerde K.J., Alenezi N., Alghamdi H.A., Aljubab H.A., Al-Hussaini A.A., et al. Exome sequencing in routine diagnostics: A generic test for 254 patients with primary immunodeficiencies. Genome Med. 2019;11:38. PubMed PMC
Majewski J., Schwartzentruber J., Lalonde E., Montpetit A., Jabado N. What can exome sequencing do for you? J. Med. Genet. 2011;48:580–589. PubMed
ENCODE Project Consortium. Kundaje A., Aldred S.F., Collins P.J., Davis C.A., Doyle F., Epstein C.B., Frietze S., Harrow J., Kaul R., et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. PubMed PMC
Khurana E., Fu Y., Chakravarty D., Demichelis F., Rubin M.A., Gerstein M. Role of non-coding sequence variants in cancer. Nat. Rev. Genet. 2016;17:93–108. PubMed
Dimitrieva S., Bucher P. UCNEbase - A database of ultraconserved non-coding elements and genomic regulatory blocks. Nucleic Acids Res. 2013;41:101–109. PubMed PMC
Harmston N., Barešić A., Lenhard B. The mystery of extreme non-coding conservation. Phil. Trans. Biol. Sci. 2013;368:20130021. PubMed PMC
de La Calle-Mustienes E., Feijóo C.G., Manzanares M., Tena J.J., Rodríguez-Seguel E., Letizia A., Allende M.L., Gómez-Skarmeta J.L. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 2005;15:1061–1072. PubMed PMC
Pennacchio L.A., Ahituv N., Moses A.M., Prabhakar S., Nobrega M.A., Shoukry M., Minovitsky S., Dubchak I., Holt A., Lewis K.D., et al. In vivo enhancer analysis of human conserved noncoding sequences. Nature. 2006;444:499–502. PubMed
Dixon J.R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–380. PubMed PMC
Spielmann M., Lupiáñez D.G., Mundlos S. Structural variation in the 3D genome. Nat. Rev. Genet. 2018;19:453–467. PubMed
Hoang P.H., Dobbins S.E., Cornish A.J., Chubb D., Law P.J., Kaiser M., Houlston R.S. Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms. Leukemia. 2018;32:2459–2470. PubMed PMC
Carss K.J., Arno G., Erwood M., Stephens J., Sanchis-Juan A., Hull S., Megy K., Grozeva D., Dewhurst E., Malka S., et al. Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am. J. Hum. Genet. 2017;100:75–90. PubMed PMC
Guo C., Ludvik A.E., Arlotto M.E., Hayes M.G., Armstrong L.L., Scholtens D.M., Brown C.D., Newgard C.B., Becker T.C., Layden B.T., et al. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat. Commun. 2015;6:6069. PubMed PMC
van den Boogaard M., Smemo S., Burnicka-Turek O., Arnolds D.E., van de Werken H.J.G., Klous P., McKean D., Muehlschlegel J.D., Moosmann J., Toka O., et al. A common genetic variant within SCN10A modulates cardiac SCN5A expression. J. Clin. Invest. 2014;124:1844–1852. PubMed PMC
Weisschuh N., Sturm M., Baumann B., Audo I., Ayuso C., Bocquet B., Branham K., Brooks B.P., Catalá-Mora J., Giorda R., et al. Deep-intronic variants in CNGB3 cause achromatopsia by pseudoexon activation. Hum. Mutat. 2020;41:255–264. PubMed PMC
Khan M., Cornelis S.S., Pozo-Valero M.D., Whelan L., Runhart E.H., Mishra K., Bults F., AlSwaiti Y., AlTalbishi A., De Baere E., et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet. Med. 2020;22:1235–1246. PubMed
Qian X., Wang J., Wang M., Igelman A.D., Jones K.D., Li Y., Wang K., Goetz K.E., Birch D.G., Yang P., et al. Identification of deep-intronic splice mutations in a large cohort of patients with inherited retinal diseases. Front. Genet. 2021;12 PubMed PMC
den Hollander A.I., Koenekoop R.K., Yzer S., Lopez I., Arends M.L., Voesenek K.E.J., Zonneveld M.N., Strom T.M., Meitinger T., Brunner H.G., et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of leber congenital amaurosis. Am. J. Hum. Genet. 2006;79:556–561. PubMed PMC
Small K.W., DeLuca A.P., Whitmore S.S., Rosenberg T., Silva-Garcia R., Udar N., Puech B., Garcia C.A., Rice T.A., Fishman G.A., et al. North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology. 2016;123:9–18. PubMed PMC
Small K.W. North Carolina macular dystrophy, revisited. Ophthalmology. 1989;96:1747–1754. PubMed
Small K.W., Weber J.L., Roses A., Lennon F., Vance J.M., Pericak-Vance M.A. North Carolina macular dystrophy is assigned to chromosome 6. Genomics. 1992;13:681–685. PubMed
Cipriani V., Silva R.S., Arno G., Pontikos N., Kalhoro A., Valeina S., Inashkina I., Audere M., Rutka K., Puech B., et al. Duplication events downstream of IRX1 cause North Carolina macular dystrophy at the MCDR3 locus. Sci. Rep. 2017;7:7512. PubMed PMC
Lefler W.H., Wadsworth J.A., Sidbury J.B. Hereditary macular degeneration and amino-aciduria. Am. J. Ophthalmol. 1971;71:224–230. PubMed
Small K.W., Weber J., Roses A., Pericak-Vance P. North Carolina macular dystrophy (MCDR1): A review and refined mapping to 6q14-q16.2. Ophthalmic Paediatr. Genet. 1993;14:143–150. PubMed
Small K.W. North Carolina macular dystrophy: clinical features, genealogy, and genetic linkage analysis. Trans. Am. Ophthalmol. Soc. 1998;96:925–961. PubMed PMC
Rosenberg T., Roos B., Johnsen T., Bech N., Scheetz T.E., Larsen M., Stone E.M., Fingert J.H. Clinical and genetic characterization of a Danish family with North Carolina macular dystrophy. Mol. Vis. 2010;16:2659–2668. PubMed PMC
Silva R.S., Arno G., Cipriani V., Pontikos N., Defoort-Dhellemmes S., Kalhoro A., Carss K.J., Raymond F.L., Dhaenens C.M., Jensen H., et al. Unique non-coding variants upstream of PRDM13 are associated with a spectrum of developmental retinal dystrophies including Progressive Bifocal Chorioretinal Atrophy. Hum. Mutat. 2019;40:578–587. PubMed
Namburi P., Khateb S., Meyer S., Bentovim T., Ratnapriya R., Khramushin A., Swaroop A., Schueler-Furman O., Banin E., Sharon D. A unique PRDM13-associated variant in a Georgian Jewish family with probable North Carolina macular dystrophy and the possible contribution of a unique CFH variant. Mol. Vis. 2020;26:299–310. PubMed PMC
Bowne S.J., Sullivan L.S., Wheaton D.K., Locke K.G., Jones K.D., Koboldt D.C., Fulton R.S., Wilson R.K., Blanton S.H., Birch D.G., Daiger S.P. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene. Mol. Vis. 2016;22:1239–1247. PubMed PMC
Manes G., Joly W., Guignard T., Smirnov V., Berthemy S., Bocquet B., Audo I., Zeitz C., Sahel J., Cazevieille C., et al. A novel duplication of PRMD13 causes North Carolina macular dystrophy: Overexpression of PRDM13 orthologue in drosophila eye reproduces the human phenotype. Hum. Mol. Genet. 2017;26:4367–4374. PubMed
Wu S., Yuan Z., Sun Z., Zhu T., Wei X., Zou X., Sui R. A novel tandem duplication of PRDM13 in a Chinese family with North Carolina macular dystrophy. Graefes Arch. Clin. Exp. Ophthalmol. 2021;260:645–653. PubMed
Small K.W., van de Sompele S., Nuytemans K., Vincent A., Yuregir O.O., Ciloglu E., Sariyildiz C., Rosseel T., Avetisjan J., Udar N., et al. A novel duplication involving PRDM13 in a Turkish family supports its role in North Carolina macular dystrophy (NCMD/MCDR1) Mol. Vis. 2021;27:518–527. PubMed PMC
Mona B., Uruena A., Kollipara R.K., Ma Z., Borromeo M.D., Chang J.C., Johnson J.E. Repression by PRDM13 is critical for generating precision in neuronal identity. Elife. 2017;6:e25787. PubMed PMC
Watanabe S., Sanuki R., Sugita Y., Imai W., Yamazaki R., Kozuka T., Ohsuga M., Furukawa T. Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J. Neurosci. 2015;35:8004–8020. PubMed PMC
Whittaker D.E., Oleari R., Gregory L.C., le Quesne-Stabej P., Williams H.J., GOSgene. Formosa N., Cachia M.J., Field D., Lettieri A., et al. A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. J. Clin. Invest. 2021;131:e141587. PubMed PMC
Coolen M., Altin N., Rajamani K., Pereira E., Siquier-Pernet K., Puig Lombardi E., Moreno N., Barcia G., Yvert M., Laquerrière A., et al. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am. J. Hum. Genet. 2022;109:909–927. PubMed PMC
Tena J.J., Alonso M.E., de La Calle-Mustienes E., Splinter E., de Laat W., Manzanares M., Gómez-Skarmeta J.L. An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nat. Commun. 2011;2:310. PubMed
Bosse A., Zülch A., Becker M.-B., Torres M., Gómez-Skarmeta J.L., Modolell J., Gruss P. Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech. Dev. 1997;69:169–181. PubMed
Cohen D.R., Cheng C.W., Cheng S.H., Hui C.C. Expression of two novel mouse Iroquois homeobox genes during neurogenesis. Mech. Dev. 2000;91:317–321. PubMed
Cheng C.W., Yan C.H.M., Hui C.c., Strähle U., Cheng S.H. The homeobox gene irx1a is required for the propagation of the neurogenic waves in the zebrafish retina. Mech. Dev. 2006;123:252–263. PubMed
Cherry T.J., Yang M.G., Harmin D.A., Tao P., Timms A.E., Bauwens M., Allikmets R., Jones E.M., Chen R., de Baere E., Greenberg M.E. Mapping the cis-regulatory architecture of the human retina reveals noncoding genetic variation in disease. Proc. Natl. Acad. Sci. USA. 2020;117:9001–9012. PubMed PMC
Wang J., Zibetti C., Shang P., Sripathi S.R., Zhang P., Cano M., Hoang T., Xia S., Ji H., Merbs S.L., et al. ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nat. Commun. 2018;9:1364. PubMed PMC
Pinelli M., Carissimo A., Cutillo L., Lai C.H., Mutarelli M., Moretti M.N., Singh M.V., Karali M., Carrella D., Pizzo M., et al. An atlas of gene expression and gene co-regulation in the human retina. Nucleic Acids Res. 2016;44:5773–5784. PubMed PMC
Meuleman W., Muratov A., Rynes E., Halow J., Lee K., Bates D., Diegel M., Dunn D., Neri F., Teodosiadis A., et al. Index and biological spectrum of human DNase I hypersensitive sites. Nature. 2020;584:244–251. PubMed PMC
de Bruijn S.E., Fiorentino A., Ottaviani D., Fanucchi S., Melo U.S., Corral-Serrano J.C., Mulders T., Georgiou M., Rivolta C., Pontikos N., et al. Structural variants create new topological-associated domains and ectopic retinal enhancer-gene contact in dominant retinitis pigmentosa. Am. J. Hum. Genet. 2020;107:802–814. PubMed PMC
Matelot M., Noordermeer D. Determination of high-resolution 3D chromatin organization using circular chromosome conformation capture (4C-seq) Methods Mol. Biol. 2016;1480:223–241. PubMed
Schwartzman O., Mukamel Z., Oded-Elkayam N., Olivares-Chauvet P., Lubling Y., Landan G., Izraeli S., Tanay A. UMI-4C for quantitative and targeted chromosomal contact profiling. Nat. Methods. 2016;13:685–691. PubMed
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. PubMed PMC
Bessa J., Tena J.J., de La Calle-Mustienes E., Fernández-Miñán A., Naranjo S., Fernández A., Montoliu L., Akalin A., Lenhard B., Casares F., Gómez-Skarmeta J.L. Zebrafish Enhancer Detection (ZED) vector: A new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev. Dyn. 2009;238:2409–2417. PubMed
Ogino H., McConnell W.B., Grainger R.M. High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat. Protoc. 2006;1:1703–1710. PubMed
Bessa J., Gómez-Skarmeta J.L. Molecular Methods for Evolutionary Genetics. 2011. Making Reporter gene constructs to analyze cis-regulatory elements; pp. 397–408. PubMed
Sive H.L., Grainger R.M., Harland R.M. Cold Spring Harbor Laboratory Press; New York: 2000. Early Development of Xenopus laevis: A Laboratory Manual.
Raczy C., Petrovski R., Saunders C.T., Chorny I., Kruglyak S., Margulies E.H., Chuang H.Y., Källberg M., Kumar S.A., Liao A., et al. Isaac: Ultra-fast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013;29:2041–2043. PubMed
Kim S., Scheffler K., Halpern A.L., Bekritsky M.A., Noh E., Källberg M., Chen X., Kim Y., Beyter D., Krusche P., Saunders C.T. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods. 2018;15:591–594. PubMed
Cingolani P., Platts A., Wang L.L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. PubMed PMC
Landrum M.J., Lee J.M., Benson M., Brown G.R., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Jang W., et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–D1067. PubMed PMC
Liu X., Wu C., Li C., Boerwinkle E. dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum. Mutat. 2016;37:235–241. PubMed PMC
Chen X., Schulz-Trieglaff O., Shaw R., Barnes B., Schlesinger F., Källberg M., Cox A.J., Kruglyak S., Saunders C.T. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–1222. PubMed
Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141, 456 humans. Nature. 2020;581:434–443. PubMed PMC
Wingender E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief. Bioinform. 2008;9:326–332. PubMed
Zhang S., He Y., Liu H., Zhai H., Huang D., Yi X., Dong X., Wang Z., Zhao K., Zhou Y., et al. regBase: whole genome base-wise aggregation and functional prediction for human non-coding regulatory variants. Nucleic Acids Res. 2019;47:e134. PubMed PMC
Lu Q., Hu Y., Sun J., Cheng Y., Cheung K.H., Zhao H. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data. Sci. Rep. 2015;5:10576. PubMed PMC
Wells A., Heckerman D., Torkamani A., Yin L., Sebat J., Ren B., Telenti A., di Iulio J. Ranking of non-coding pathogenic variants and putative essential regions of the human genome. Nat. Commun. 2019;10:5241. PubMed PMC
Yang H., Chen R., Wang Q., Wei Q., Ji Y., Zheng G., Zhong X., Cox N.J., Li B. De novo pattern discovery enables robust assessment of functional consequences of non-coding variants. Bioinformatics. 2019;35:1453–1460. PubMed PMC
Ioannidis N.M., Davis J.R., DeGorter M.K., Larson N.B., McDonnell S.K., French A.J., Battle A.J., Hastie T.J., Thibodeau S.N., Montgomery S.B., et al. FIRE: Functional inference of genetic variants that regulate gene expression. Bioinformatics. 2017;33:3895–3901. PubMed PMC
Zhou L., Zhao F. Prioritization and functional assessment of noncoding variants associated with complex diseases. Genome Med. 2018;10:53. PubMed PMC
di Iulio J., Bartha I., Wong E.H.M., Yu H.C., Lavrenko V., Yang D., Jung I., Hicks M.A., Shah N., Kirkness E.F., et al. The human noncoding genome defined by genetic diversity. Nat. Genet. 2018;50:333–337. PubMed
Verdin H., D’haene B., Beysen D., Novikova Y., Menten B., Sante T., Lapunzina P., Nevado J., Carvalho C.M.B., Lupski J.R., De Baere E. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 2013;9:e1003358. PubMed PMC
Vissers L.E.L.M., Bhatt S.S., Janssen I.M., Xia Z., Lalani S.R., Pfundt R., Derwinska K., de Vries B.B.A., Gilissen C., Hoischen A., et al. Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture. Hum. Mol. Genet. 2009;18:3579–3593. PubMed
Rice P., Longden I., Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–277. PubMed
Abeysinghe S.S., Chuzhanova N., Krawczak M., Ball E.v., Cooper D.N. Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Hum. Mutat. 2003;22:229–244. PubMed
Thomas E.D., Timms A.E., Giles S., Harkins-Perry S., Lyu P., Hoang T., Qian J., Jackson V.E., Bahlo M., Blackshaw S., et al. Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Dev. Cell. 2022;57:820–836.e6. PubMed PMC
Hao Y., Hao S., Andersen-Nissen E., Mauck W.M., Zheng S., Butler A., Lee M.J., Wilk A.J., Darby C., Zager M., et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e29. PubMed PMC
Korsunsky I., Millard N., Fan J., Slowikowski K., Zhang F., Wei K., Baglaenko Y., Brenner M., Loh P.R., Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods. 2019;16:1289–1296. PubMed PMC
Lesurf R., Cotto K.C., Wang G., Griffith M., Kasaian K., Jones S., Montgomery S.B., Griffith O.L. ORegAnno 3.0: A community-driven resource for curated regulatory annotation. Nucleic Acids Res. 2016;44:126–132. PubMed PMC
Sullivan C.H., Majumdar H.D., Neilson K.M., Moody S.A. Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation. Dev. Biol. 2019;446:68–79. PubMed PMC
Hanotel J., Bessodes N., Thélie A., Hedderich M., Parain K., Van Driessche B., Brandão K.D.O., Kricha S., Jorgensen M.C., Grapin-Botton A., et al. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Dev. Biol. 2014;386:340–357. PubMed
Bessodes N., Parain K., Bronchain O., Bellefroid E.J., Perron M. Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina. Neural Dev. 2017;12:16. PubMed PMC
Ghiasvand N.M., Rudolph D.D., Mashayekhi M., Brzezinski J.A., Goldman D., Glaser T. Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat. Neurosci. 2011;14:578–586. PubMed PMC
Bhatia S., Bengani H., Fish M., Brown A., Divizia M.T., de Marco R., Damante G., Grainger R., van Heyningen V., Kleinjan D.A. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 2013;93:1126–1134. PubMed PMC
Radziwon A., Arno G., K Wheaton D., McDonagh E.M., Baple E.L., Webb-Jones K., G Birch D., Webster A.R., MacDonald I.M., MacDonald I.M. Single-base substitutions in the CHM promoter as a cause of choroideremia. Hum. Mutat. 2017;38:704–715. PubMed
Green D.J., Lenassi E., Manning C.S., McGaughey D., Sharma V., Black G.C., Ellingford J.M., Sergouniotis P.I. North Carolina macular dystrophy: Phenotypic variability and computational analysis of disease-associated noncoding variants. Invest. Ophthalmol. Vis. Sci. 2021;62:16. PubMed PMC
Kwong J.M.K., Lalezary M., Nguyen J.K., Yang C., Khattar A., Piri N., Mareninov S., Gordon L.K., Caprioli J. Co-expression of heat shock transcription factors 1 and 2 in rat retinal ganglion cells. Neurosci. Lett. 2006;405:191–195. PubMed
Pedersen H.R., Baraas R.C., Landsend E.C.S., Utheim Ø.A., Utheim T.P., Gilson S.J., Neitz M. PAX6 genotypic and retinal phenotypic characterization in congenital aniridia. Invest. Ophthalmol. Vis. Sci. 2020;61:14. PubMed PMC
Yamamoto H., Kon T., Omori Y., Furukawa T. Functional and evolutionary diversification of Otx2 and Crx in vertebrate retinal photoreceptor and bipolar cell development. Cell Rep. 2020;30:658–671.e5. PubMed
Javed A., Mattar P., Lu S., Kruczek K., Kloc M., Gonzalez-Cordero A., Bremner R., Ali R.R., Cayouette M. Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development. 2020;147:dev188730. PubMed
Fries M., Brown T.W., Jolicoeur C., Boudreau-Pinsonneault C., Javed A., Abram P., Cayouette M. Pou3f1 orchestrates a gene regulatory network controlling contralateral retinogeniculate projections. bioRxiv. 2022 doi: 10.1101/2022.06.28.497982. Preprint at. PubMed DOI
Small K.W., Tran E.M., Small L., Rao R.C., Shaya F. Multimodal Imaging and Functional Testing in a North Carolina Macular Disease Family: Toxoplasmosis, Fovea Plana, and Torpedo Maculopathy Are Phenocopies. Ophthalmol. Retina. 2019;3:607–614. PubMed
Provis J.M., van Driel D., Billson F.A., Russell P. Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J. Comp. Neurol. 1985;233:429–451. PubMed
Moshiri A., Chen R., Kim S., Harris R.A., Li Y., Raveendran M., Davis S., Liang Q., Pomerantz O., Wang J., et al. A nonhuman primate model of inherited retinal disease. J. Clin. Invest. 2019;129:863–874. PubMed PMC
Franke M., Ibrahim D.M., Andrey G., Schwarzer W., Heinrich V., Schöpflin R., Kraft K., Kempfer R., Jerković I., Chan W.L., et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature. 2016;538:265–269. PubMed
Voigt A.P., Mullin N.K., Whitmore S.S., DeLuca A.P., Burnight E.R., Liu X., Tucker B.A., Scheetz T.E., Stone E.M., Mullins R.F. Human photoreceptor cells from different macular subregions have distinct transcriptional profiles. Hum. Mol. Genet. 2021;30:1543–1558. PubMed PMC
Hoshino A., Ratnapriya R., Brooks M.J., Chaitankar V., Wilken M.S., Zhang C., Starostik M.R., Gieser L., la Torre A., Nishio M., et al. Molecular anatomy of the developing human retina. Dev. Cell. 2017;43:763–779.e4. PubMed PMC
De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa