Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy

. 2022 Nov 03 ; 109 (11) : 2029-2048. [epub] 20221014

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36243009
Odkazy

PubMed 36243009
PubMed Central PMC9674966
DOI 10.1016/j.ajhg.2022.09.013
PII: S0002-9297(22)00446-3
Knihovny.cz E-zdroje

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.

Center for Medical Genetics Antwerp University Hospital Antwerp Belgium

Center for Medical Genetics Ghent University Hospital Ghent Belgium; Department of Biomedical Molecular Biology Ghent University Ghent Belgium

Center for Medical Genetics Ghent University Hospital Ghent Belgium; Department of Ophthalmology Ghent University Hospital Ghent Belgium; Department of Head and Skin Ghent University Ghent Belgium; Division of Ophthalmology and Center for Cellular and Molecular Therapeutics Children's Hospital of Philadelphia Philadelphia PA USA

Centro Andaluz de Biología del Desarrollo Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide Sevilla Spain

Department of Biomolecular Medicine Ghent University Ghent Belgium; Center for Medical Genetics Ghent University Hospital Ghent Belgium

Department of Biomolecular Medicine Ghent University Ghent Belgium; Center for Medical Genetics Ghent University Hospital Ghent Belgium; Department of Biomedical Molecular Biology Ghent University Ghent Belgium

Department of Human Genetics Amsterdam UMC Academic Medical Center 1105 AZ Amsterdam The Netherlands; Queen Emma Centre of Precision Medicine Amsterdam University Medical Centre University of Amsterdam Amsterdam The Netherlands

Department of Ophthalmology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Ophthalmology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Ophthalmology Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands; Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands

Department of Ophthalmology Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands; Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands

Department of Ophthalmology Ghent University Hospital Ghent Belgium

Department of Ophthalmology SUNY Downstate Medical Center University Brooklyn New York USA

Department of Ophthalmology University Hospitals Leuven Leuven Belgium

Division of Molecular Medicine Leeds Institute of Medical Research University of Leeds Leeds UK

Institute of Molecular and Clinical Ophthalmology Basel Basel Switzerland; Department of Ophthalmology University of Basel Basel Switzerland; Department of Genetics and Genome Biology University of Leicester Leicester UK

Macula and Retina Institute Los Angeles and Glendale California USA

University of Lausanne Jules Gonin Eye Hospital Lausanne Switzerland

Zobrazit více v PubMed

Farwell K.D., Shahmirzadi L., El-Khechen D., Powis Z., Chao E.C., Tippin Davis B., Baxter R.M., Zeng W., Mroske C., Parra M.C., et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: Results from 500 unselected families with undiagnosed genetic conditions. Genet. Med. 2015;17:578–586. PubMed

Haer-Wigman L., van Zelst-Stams W.A., Pfundt R., van den Born L.I., Klaver C.C., Verheij J.B., Hoyng C.B., Breuning M.H., Boon C.J., Kievit A.J., et al. Diagnostic exome sequencing in 266 Dutch patients with visual impairment. Eur. J. Hum. Genet. 2017;25:591–599. PubMed PMC

Arts P., Simons A., Alzahrani M.S., Yilmaz E., Alidrissi E., van Aerde K.J., Alenezi N., Alghamdi H.A., Aljubab H.A., Al-Hussaini A.A., et al. Exome sequencing in routine diagnostics: A generic test for 254 patients with primary immunodeficiencies. Genome Med. 2019;11:38. PubMed PMC

Majewski J., Schwartzentruber J., Lalonde E., Montpetit A., Jabado N. What can exome sequencing do for you? J. Med. Genet. 2011;48:580–589. PubMed

ENCODE Project Consortium. Kundaje A., Aldred S.F., Collins P.J., Davis C.A., Doyle F., Epstein C.B., Frietze S., Harrow J., Kaul R., et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. PubMed PMC

Khurana E., Fu Y., Chakravarty D., Demichelis F., Rubin M.A., Gerstein M. Role of non-coding sequence variants in cancer. Nat. Rev. Genet. 2016;17:93–108. PubMed

Dimitrieva S., Bucher P. UCNEbase - A database of ultraconserved non-coding elements and genomic regulatory blocks. Nucleic Acids Res. 2013;41:101–109. PubMed PMC

Harmston N., Barešić A., Lenhard B. The mystery of extreme non-coding conservation. Phil. Trans. Biol. Sci. 2013;368:20130021. PubMed PMC

de La Calle-Mustienes E., Feijóo C.G., Manzanares M., Tena J.J., Rodríguez-Seguel E., Letizia A., Allende M.L., Gómez-Skarmeta J.L. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts. Genome Res. 2005;15:1061–1072. PubMed PMC

Pennacchio L.A., Ahituv N., Moses A.M., Prabhakar S., Nobrega M.A., Shoukry M., Minovitsky S., Dubchak I., Holt A., Lewis K.D., et al. In vivo enhancer analysis of human conserved noncoding sequences. Nature. 2006;444:499–502. PubMed

Dixon J.R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–380. PubMed PMC

Spielmann M., Lupiáñez D.G., Mundlos S. Structural variation in the 3D genome. Nat. Rev. Genet. 2018;19:453–467. PubMed

Hoang P.H., Dobbins S.E., Cornish A.J., Chubb D., Law P.J., Kaiser M., Houlston R.S. Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms. Leukemia. 2018;32:2459–2470. PubMed PMC

Carss K.J., Arno G., Erwood M., Stephens J., Sanchis-Juan A., Hull S., Megy K., Grozeva D., Dewhurst E., Malka S., et al. Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am. J. Hum. Genet. 2017;100:75–90. PubMed PMC

Guo C., Ludvik A.E., Arlotto M.E., Hayes M.G., Armstrong L.L., Scholtens D.M., Brown C.D., Newgard C.B., Becker T.C., Layden B.T., et al. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat. Commun. 2015;6:6069. PubMed PMC

van den Boogaard M., Smemo S., Burnicka-Turek O., Arnolds D.E., van de Werken H.J.G., Klous P., McKean D., Muehlschlegel J.D., Moosmann J., Toka O., et al. A common genetic variant within SCN10A modulates cardiac SCN5A expression. J. Clin. Invest. 2014;124:1844–1852. PubMed PMC

Weisschuh N., Sturm M., Baumann B., Audo I., Ayuso C., Bocquet B., Branham K., Brooks B.P., Catalá-Mora J., Giorda R., et al. Deep-intronic variants in CNGB3 cause achromatopsia by pseudoexon activation. Hum. Mutat. 2020;41:255–264. PubMed PMC

Khan M., Cornelis S.S., Pozo-Valero M.D., Whelan L., Runhart E.H., Mishra K., Bults F., AlSwaiti Y., AlTalbishi A., De Baere E., et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet. Med. 2020;22:1235–1246. PubMed

Qian X., Wang J., Wang M., Igelman A.D., Jones K.D., Li Y., Wang K., Goetz K.E., Birch D.G., Yang P., et al. Identification of deep-intronic splice mutations in a large cohort of patients with inherited retinal diseases. Front. Genet. 2021;12 PubMed PMC

den Hollander A.I., Koenekoop R.K., Yzer S., Lopez I., Arends M.L., Voesenek K.E.J., Zonneveld M.N., Strom T.M., Meitinger T., Brunner H.G., et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of leber congenital amaurosis. Am. J. Hum. Genet. 2006;79:556–561. PubMed PMC

Small K.W., DeLuca A.P., Whitmore S.S., Rosenberg T., Silva-Garcia R., Udar N., Puech B., Garcia C.A., Rice T.A., Fishman G.A., et al. North Carolina Macular Dystrophy Is Caused by Dysregulation of the Retinal Transcription Factor PRDM13. Ophthalmology. 2016;123:9–18. PubMed PMC

Small K.W. North Carolina macular dystrophy, revisited. Ophthalmology. 1989;96:1747–1754. PubMed

Small K.W., Weber J.L., Roses A., Lennon F., Vance J.M., Pericak-Vance M.A. North Carolina macular dystrophy is assigned to chromosome 6. Genomics. 1992;13:681–685. PubMed

Cipriani V., Silva R.S., Arno G., Pontikos N., Kalhoro A., Valeina S., Inashkina I., Audere M., Rutka K., Puech B., et al. Duplication events downstream of IRX1 cause North Carolina macular dystrophy at the MCDR3 locus. Sci. Rep. 2017;7:7512. PubMed PMC

Lefler W.H., Wadsworth J.A., Sidbury J.B. Hereditary macular degeneration and amino-aciduria. Am. J. Ophthalmol. 1971;71:224–230. PubMed

Small K.W., Weber J., Roses A., Pericak-Vance P. North Carolina macular dystrophy (MCDR1): A review and refined mapping to 6q14-q16.2. Ophthalmic Paediatr. Genet. 1993;14:143–150. PubMed

Small K.W. North Carolina macular dystrophy: clinical features, genealogy, and genetic linkage analysis. Trans. Am. Ophthalmol. Soc. 1998;96:925–961. PubMed PMC

Rosenberg T., Roos B., Johnsen T., Bech N., Scheetz T.E., Larsen M., Stone E.M., Fingert J.H. Clinical and genetic characterization of a Danish family with North Carolina macular dystrophy. Mol. Vis. 2010;16:2659–2668. PubMed PMC

Silva R.S., Arno G., Cipriani V., Pontikos N., Defoort-Dhellemmes S., Kalhoro A., Carss K.J., Raymond F.L., Dhaenens C.M., Jensen H., et al. Unique non-coding variants upstream of PRDM13 are associated with a spectrum of developmental retinal dystrophies including Progressive Bifocal Chorioretinal Atrophy. Hum. Mutat. 2019;40:578–587. PubMed

Namburi P., Khateb S., Meyer S., Bentovim T., Ratnapriya R., Khramushin A., Swaroop A., Schueler-Furman O., Banin E., Sharon D. A unique PRDM13-associated variant in a Georgian Jewish family with probable North Carolina macular dystrophy and the possible contribution of a unique CFH variant. Mol. Vis. 2020;26:299–310. PubMed PMC

Bowne S.J., Sullivan L.S., Wheaton D.K., Locke K.G., Jones K.D., Koboldt D.C., Fulton R.S., Wilson R.K., Blanton S.H., Birch D.G., Daiger S.P. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene. Mol. Vis. 2016;22:1239–1247. PubMed PMC

Manes G., Joly W., Guignard T., Smirnov V., Berthemy S., Bocquet B., Audo I., Zeitz C., Sahel J., Cazevieille C., et al. A novel duplication of PRMD13 causes North Carolina macular dystrophy: Overexpression of PRDM13 orthologue in drosophila eye reproduces the human phenotype. Hum. Mol. Genet. 2017;26:4367–4374. PubMed

Wu S., Yuan Z., Sun Z., Zhu T., Wei X., Zou X., Sui R. A novel tandem duplication of PRDM13 in a Chinese family with North Carolina macular dystrophy. Graefes Arch. Clin. Exp. Ophthalmol. 2021;260:645–653. PubMed

Small K.W., van de Sompele S., Nuytemans K., Vincent A., Yuregir O.O., Ciloglu E., Sariyildiz C., Rosseel T., Avetisjan J., Udar N., et al. A novel duplication involving PRDM13 in a Turkish family supports its role in North Carolina macular dystrophy (NCMD/MCDR1) Mol. Vis. 2021;27:518–527. PubMed PMC

Mona B., Uruena A., Kollipara R.K., Ma Z., Borromeo M.D., Chang J.C., Johnson J.E. Repression by PRDM13 is critical for generating precision in neuronal identity. Elife. 2017;6:e25787. PubMed PMC

Watanabe S., Sanuki R., Sugita Y., Imai W., Yamazaki R., Kozuka T., Ohsuga M., Furukawa T. Prdm13 regulates subtype specification of retinal amacrine interneurons and modulates visual sensitivity. J. Neurosci. 2015;35:8004–8020. PubMed PMC

Whittaker D.E., Oleari R., Gregory L.C., le Quesne-Stabej P., Williams H.J., GOSgene. Formosa N., Cachia M.J., Field D., Lettieri A., et al. A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. J. Clin. Invest. 2021;131:e141587. PubMed PMC

Coolen M., Altin N., Rajamani K., Pereira E., Siquier-Pernet K., Puig Lombardi E., Moreno N., Barcia G., Yvert M., Laquerrière A., et al. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am. J. Hum. Genet. 2022;109:909–927. PubMed PMC

Tena J.J., Alonso M.E., de La Calle-Mustienes E., Splinter E., de Laat W., Manzanares M., Gómez-Skarmeta J.L. An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nat. Commun. 2011;2:310. PubMed

Bosse A., Zülch A., Becker M.-B., Torres M., Gómez-Skarmeta J.L., Modolell J., Gruss P. Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech. Dev. 1997;69:169–181. PubMed

Cohen D.R., Cheng C.W., Cheng S.H., Hui C.C. Expression of two novel mouse Iroquois homeobox genes during neurogenesis. Mech. Dev. 2000;91:317–321. PubMed

Cheng C.W., Yan C.H.M., Hui C.c., Strähle U., Cheng S.H. The homeobox gene irx1a is required for the propagation of the neurogenic waves in the zebrafish retina. Mech. Dev. 2006;123:252–263. PubMed

Cherry T.J., Yang M.G., Harmin D.A., Tao P., Timms A.E., Bauwens M., Allikmets R., Jones E.M., Chen R., de Baere E., Greenberg M.E. Mapping the cis-regulatory architecture of the human retina reveals noncoding genetic variation in disease. Proc. Natl. Acad. Sci. USA. 2020;117:9001–9012. PubMed PMC

Wang J., Zibetti C., Shang P., Sripathi S.R., Zhang P., Cano M., Hoang T., Xia S., Ji H., Merbs S.L., et al. ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nat. Commun. 2018;9:1364. PubMed PMC

Pinelli M., Carissimo A., Cutillo L., Lai C.H., Mutarelli M., Moretti M.N., Singh M.V., Karali M., Carrella D., Pizzo M., et al. An atlas of gene expression and gene co-regulation in the human retina. Nucleic Acids Res. 2016;44:5773–5784. PubMed PMC

Meuleman W., Muratov A., Rynes E., Halow J., Lee K., Bates D., Diegel M., Dunn D., Neri F., Teodosiadis A., et al. Index and biological spectrum of human DNase I hypersensitive sites. Nature. 2020;584:244–251. PubMed PMC

de Bruijn S.E., Fiorentino A., Ottaviani D., Fanucchi S., Melo U.S., Corral-Serrano J.C., Mulders T., Georgiou M., Rivolta C., Pontikos N., et al. Structural variants create new topological-associated domains and ectopic retinal enhancer-gene contact in dominant retinitis pigmentosa. Am. J. Hum. Genet. 2020;107:802–814. PubMed PMC

Matelot M., Noordermeer D. Determination of high-resolution 3D chromatin organization using circular chromosome conformation capture (4C-seq) Methods Mol. Biol. 2016;1480:223–241. PubMed

Schwartzman O., Mukamel Z., Oded-Elkayam N., Olivares-Chauvet P., Lubling Y., Landan G., Izraeli S., Tanay A. UMI-4C for quantitative and targeted chromosomal contact profiling. Nat. Methods. 2016;13:685–691. PubMed

Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. PubMed PMC

Bessa J., Tena J.J., de La Calle-Mustienes E., Fernández-Miñán A., Naranjo S., Fernández A., Montoliu L., Akalin A., Lenhard B., Casares F., Gómez-Skarmeta J.L. Zebrafish Enhancer Detection (ZED) vector: A new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev. Dyn. 2009;238:2409–2417. PubMed

Ogino H., McConnell W.B., Grainger R.M. High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat. Protoc. 2006;1:1703–1710. PubMed

Bessa J., Gómez-Skarmeta J.L. Molecular Methods for Evolutionary Genetics. 2011. Making Reporter gene constructs to analyze cis-regulatory elements; pp. 397–408. PubMed

Sive H.L., Grainger R.M., Harland R.M. Cold Spring Harbor Laboratory Press; New York: 2000. Early Development of Xenopus laevis: A Laboratory Manual.

Raczy C., Petrovski R., Saunders C.T., Chorny I., Kruglyak S., Margulies E.H., Chuang H.Y., Källberg M., Kumar S.A., Liao A., et al. Isaac: Ultra-fast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013;29:2041–2043. PubMed

Kim S., Scheffler K., Halpern A.L., Bekritsky M.A., Noh E., Källberg M., Chen X., Kim Y., Beyter D., Krusche P., Saunders C.T. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods. 2018;15:591–594. PubMed

Cingolani P., Platts A., Wang L.L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. PubMed PMC

Landrum M.J., Lee J.M., Benson M., Brown G.R., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Jang W., et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–D1067. PubMed PMC

Liu X., Wu C., Li C., Boerwinkle E. dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum. Mutat. 2016;37:235–241. PubMed PMC

Chen X., Schulz-Trieglaff O., Shaw R., Barnes B., Schlesinger F., Källberg M., Cox A.J., Kruglyak S., Saunders C.T. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–1222. PubMed

Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141, 456 humans. Nature. 2020;581:434–443. PubMed PMC

Wingender E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief. Bioinform. 2008;9:326–332. PubMed

Zhang S., He Y., Liu H., Zhai H., Huang D., Yi X., Dong X., Wang Z., Zhao K., Zhou Y., et al. regBase: whole genome base-wise aggregation and functional prediction for human non-coding regulatory variants. Nucleic Acids Res. 2019;47:e134. PubMed PMC

Lu Q., Hu Y., Sun J., Cheng Y., Cheung K.H., Zhao H. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data. Sci. Rep. 2015;5:10576. PubMed PMC

Wells A., Heckerman D., Torkamani A., Yin L., Sebat J., Ren B., Telenti A., di Iulio J. Ranking of non-coding pathogenic variants and putative essential regions of the human genome. Nat. Commun. 2019;10:5241. PubMed PMC

Yang H., Chen R., Wang Q., Wei Q., Ji Y., Zheng G., Zhong X., Cox N.J., Li B. De novo pattern discovery enables robust assessment of functional consequences of non-coding variants. Bioinformatics. 2019;35:1453–1460. PubMed PMC

Ioannidis N.M., Davis J.R., DeGorter M.K., Larson N.B., McDonnell S.K., French A.J., Battle A.J., Hastie T.J., Thibodeau S.N., Montgomery S.B., et al. FIRE: Functional inference of genetic variants that regulate gene expression. Bioinformatics. 2017;33:3895–3901. PubMed PMC

Zhou L., Zhao F. Prioritization and functional assessment of noncoding variants associated with complex diseases. Genome Med. 2018;10:53. PubMed PMC

di Iulio J., Bartha I., Wong E.H.M., Yu H.C., Lavrenko V., Yang D., Jung I., Hicks M.A., Shah N., Kirkness E.F., et al. The human noncoding genome defined by genetic diversity. Nat. Genet. 2018;50:333–337. PubMed

Verdin H., D’haene B., Beysen D., Novikova Y., Menten B., Sante T., Lapunzina P., Nevado J., Carvalho C.M.B., Lupski J.R., De Baere E. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 2013;9:e1003358. PubMed PMC

Vissers L.E.L.M., Bhatt S.S., Janssen I.M., Xia Z., Lalani S.R., Pfundt R., Derwinska K., de Vries B.B.A., Gilissen C., Hoischen A., et al. Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture. Hum. Mol. Genet. 2009;18:3579–3593. PubMed

Rice P., Longden I., Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–277. PubMed

Abeysinghe S.S., Chuzhanova N., Krawczak M., Ball E.v., Cooper D.N. Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Hum. Mutat. 2003;22:229–244. PubMed

Thomas E.D., Timms A.E., Giles S., Harkins-Perry S., Lyu P., Hoang T., Qian J., Jackson V.E., Bahlo M., Blackshaw S., et al. Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Dev. Cell. 2022;57:820–836.e6. PubMed PMC

Hao Y., Hao S., Andersen-Nissen E., Mauck W.M., Zheng S., Butler A., Lee M.J., Wilk A.J., Darby C., Zager M., et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e29. PubMed PMC

Korsunsky I., Millard N., Fan J., Slowikowski K., Zhang F., Wei K., Baglaenko Y., Brenner M., Loh P.R., Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods. 2019;16:1289–1296. PubMed PMC

Lesurf R., Cotto K.C., Wang G., Griffith M., Kasaian K., Jones S., Montgomery S.B., Griffith O.L. ORegAnno 3.0: A community-driven resource for curated regulatory annotation. Nucleic Acids Res. 2016;44:126–132. PubMed PMC

Sullivan C.H., Majumdar H.D., Neilson K.M., Moody S.A. Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation. Dev. Biol. 2019;446:68–79. PubMed PMC

Hanotel J., Bessodes N., Thélie A., Hedderich M., Parain K., Van Driessche B., Brandão K.D.O., Kricha S., Jorgensen M.C., Grapin-Botton A., et al. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Dev. Biol. 2014;386:340–357. PubMed

Bessodes N., Parain K., Bronchain O., Bellefroid E.J., Perron M. Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina. Neural Dev. 2017;12:16. PubMed PMC

Ghiasvand N.M., Rudolph D.D., Mashayekhi M., Brzezinski J.A., Goldman D., Glaser T. Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat. Neurosci. 2011;14:578–586. PubMed PMC

Bhatia S., Bengani H., Fish M., Brown A., Divizia M.T., de Marco R., Damante G., Grainger R., van Heyningen V., Kleinjan D.A. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 2013;93:1126–1134. PubMed PMC

Radziwon A., Arno G., K Wheaton D., McDonagh E.M., Baple E.L., Webb-Jones K., G Birch D., Webster A.R., MacDonald I.M., MacDonald I.M. Single-base substitutions in the CHM promoter as a cause of choroideremia. Hum. Mutat. 2017;38:704–715. PubMed

Green D.J., Lenassi E., Manning C.S., McGaughey D., Sharma V., Black G.C., Ellingford J.M., Sergouniotis P.I. North Carolina macular dystrophy: Phenotypic variability and computational analysis of disease-associated noncoding variants. Invest. Ophthalmol. Vis. Sci. 2021;62:16. PubMed PMC

Kwong J.M.K., Lalezary M., Nguyen J.K., Yang C., Khattar A., Piri N., Mareninov S., Gordon L.K., Caprioli J. Co-expression of heat shock transcription factors 1 and 2 in rat retinal ganglion cells. Neurosci. Lett. 2006;405:191–195. PubMed

Pedersen H.R., Baraas R.C., Landsend E.C.S., Utheim Ø.A., Utheim T.P., Gilson S.J., Neitz M. PAX6 genotypic and retinal phenotypic characterization in congenital aniridia. Invest. Ophthalmol. Vis. Sci. 2020;61:14. PubMed PMC

Yamamoto H., Kon T., Omori Y., Furukawa T. Functional and evolutionary diversification of Otx2 and Crx in vertebrate retinal photoreceptor and bipolar cell development. Cell Rep. 2020;30:658–671.e5. PubMed

Javed A., Mattar P., Lu S., Kruczek K., Kloc M., Gonzalez-Cordero A., Bremner R., Ali R.R., Cayouette M. Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development. 2020;147:dev188730. PubMed

Fries M., Brown T.W., Jolicoeur C., Boudreau-Pinsonneault C., Javed A., Abram P., Cayouette M. Pou3f1 orchestrates a gene regulatory network controlling contralateral retinogeniculate projections. bioRxiv. 2022 doi: 10.1101/2022.06.28.497982. Preprint at. PubMed DOI

Small K.W., Tran E.M., Small L., Rao R.C., Shaya F. Multimodal Imaging and Functional Testing in a North Carolina Macular Disease Family: Toxoplasmosis, Fovea Plana, and Torpedo Maculopathy Are Phenocopies. Ophthalmol. Retina. 2019;3:607–614. PubMed

Provis J.M., van Driel D., Billson F.A., Russell P. Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J. Comp. Neurol. 1985;233:429–451. PubMed

Moshiri A., Chen R., Kim S., Harris R.A., Li Y., Raveendran M., Davis S., Liang Q., Pomerantz O., Wang J., et al. A nonhuman primate model of inherited retinal disease. J. Clin. Invest. 2019;129:863–874. PubMed PMC

Franke M., Ibrahim D.M., Andrey G., Schwarzer W., Heinrich V., Schöpflin R., Kraft K., Kempfer R., Jerković I., Chan W.L., et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature. 2016;538:265–269. PubMed

Voigt A.P., Mullin N.K., Whitmore S.S., DeLuca A.P., Burnight E.R., Liu X., Tucker B.A., Scheetz T.E., Stone E.M., Mullins R.F. Human photoreceptor cells from different macular subregions have distinct transcriptional profiles. Hum. Mol. Genet. 2021;30:1543–1558. PubMed PMC

Hoshino A., Ratnapriya R., Brooks M.J., Chaitankar V., Wilken M.S., Zhang C., Starostik M.R., Gieser L., la Torre A., Nishio M., et al. Molecular anatomy of the developing human retina. Dev. Cell. 2017;43:763–779.e4. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...