Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32307445
DOI
10.1038/s41436-020-0787-4
PII: S1098-3600(21)01183-7
Knihovny.cz E-zdroje
- Klíčová slova
- ABCA4, Stargardt disease, deep-intronic variants, smMIPs, structural variants,
- MeSH
- ABC transportéry genetika MeSH
- genomika MeSH
- introny MeSH
- lidé MeSH
- makulární degenerace * genetika MeSH
- mutace MeSH
- rodokmen MeSH
- Stargardtova nemoc MeSH
- transkriptom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ABC transportéry MeSH
- ABCA4 protein, human MeSH Prohlížeč
PURPOSE: Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. METHODS: Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on a semiautomated and cost-effective method. Structural variants (SVs) were identified using relative read coverage analyses and putative splice defects were studied using in vitro assays. RESULTS: In 448 biallelic probands 14 known and 13 novel deep-intronic variants were found, resulting in pseudoexon (PE) insertions or exon elongations in 105 alleles. Intriguingly, intron 13 variants c.1938-621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions and flanking exon deletions. Eleven distinct large deletions were found, two of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified in one proband. CONCLUSION: Deep sequencing of ABCA4 and midigene-based splice assays allowed the identification of SVs and causal deep-intronic variants in 25% of biallelic STGD1 cases, which represents a model study that can be applied to other inherited diseases.
Augenarztpraxis Dorotheenstraße Berlin Germany
Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands
Center for Medical Genetics Ghent Ghent University and Ghent University Hospital Ghent Belgium
Centre de Compétence Maladie Rare Clinique Jules Verne Nantes France
CHU Lille Institut de Génétique Médicale Lille France
Department of Epidemiology Erasmus Medical Centre Rotterdam The Netherlands
Department of Genetics IIS Fundación Jiménez Díaz CIBERER Madrid Spain
Department of Histology and Embryology Medical University of Warsaw Warsaw Poland
Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands
Department of Molecular Genetics Institute of Pathology University of Ljubljana Ljubljana Slovenia
Department of Ophthalmology Amsterdam University Medical Centers Amsterdam The Netherlands
Department of Ophthalmology Erasmus Medical Centre Rotterdam The Netherlands
Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
Department of Ophthalmology Radboud University Medical Center Nijmegen The Netherlands
Department of Ophthalmology St Franziskus Hospital Münster Germany
Department of Ophthalmology Tel Aviv Sourasky Medical Center Tel Aviv Israel
Department of Ophthalmology The Jikei University School of Medicine Tokyo Japan
Department of Ophthalmology University Hospital University Regensburg Regensburg Germany
Departments of Ophthalmology and Medical Genetics University of Alberta Edmonton AB Canada
Eye Department Greenlane Clinical Centre Auckland District Health Board Auckland New Zealand
Eye Hospital University Medical Centre Ljubljana Ljubljana Slovenia
Graduate School of Health Management Keio University Tokyo Japan
Institut des Neurosciences de Montpellier INSERM Université de Montpellier Montpellier France
Institute of Human Genetics University of Regensburg Regensburg Germany
Instituto de Genética Ocular São Paulo SP Brazil
Moorfields Eye Hospital London UK
Ophthalmic Genetics Unit OMMA Ophthalmological Institute of Athens Athens Greece
Rare Retinal Disease Center AugenZentrum Siegburg MVZ ADTC Siegburg GmbH Siegburg Germany
Ruth and Bruce Rappaport Faculty of Medicine Technion Israel Institute of Technology Haifa Israel
Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
St John of Jerusalem Eye Hospital Group East Jerusalem Palestine
The Rotterdam Eye Hospital Rotterdam The Netherlands
The Rotterdam Ophthalmic Institute Rotterdam The Netherlands
The School of Genetics and Microbiology Trinity College Dublin Dublin Ireland
UCL Institute of Ophthalmology London UK
Univ Lille Inserm CHU Lille U1172 LilNCog Lille Neuroscience and Cognition F 59000 Lille France
University Eye Hospital Hannover Medical School Hannover Germany
Zobrazit více v PubMed
Carss KJ, Arno G, Erwood M, et al. Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am J Hum Genet. 2017;100:75–90.
Blacharski PA, Newsome DA. Bilateral macular holes after Nd:YAG laser posterior capsulotomy. Am J Ophthalmol. 1988;105:417–418.
Cornelis SS, Bax NM, Zernant J, et al. In silico functional meta-analysis of 5,962 ABCA4 variants in 3,928 retinal dystrophy cases. Hum Mutat. 2017;38:400–408.
Sangermano R, Khan M, Cornelis SS, et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28:100–110. PubMed PMC
Khan M, Cornelis SS, Khan MI, et al. Cost-effective molecular inversion probe-based ABCA4 sequencing reveals deep-intronic variants in Stargardt disease. Hum Mutat. 2019;40:1749–1759.
Schulz HL, Grassmann F, Kellner U, et al. Mutation spectrum of the ABCA4 gene in 335 Stargardt disease patients from a multicenter German cohort—impact of selected deep intronic variants and common SNPs. Invest Ophthalmol Vis Sci. 2017;58:394–403. PubMed PMC
Bauwens M, Garanto A, Sangermano R, et al. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genet Med. 2019;21:1761–1771. PubMed PMC
Braun TA, Mullins RF, Wagner AH, et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum Mol Genet. 2013;22:5136–5145. PubMed PMC
Sangermano R, Garanto A, Khan M, et al. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genet Med. 2019;21:1751–1760. PubMed PMC
Zernant J, Xie YA, Ayuso C, et al. Analysis of the ABCA4 genomic locus in Stargardt disease. Hum Mol Genet. 2014;23:6797–6806. PubMed PMC
Bauwens M, De Zaeytijd J, Weisschuh N, et al. An augmented ABCA4 screen targeting noncoding regions reveals a deep intronic founder variant in Belgian Stargardt patients. Hum Mutat. 2015;36:39–42.
Bax NM, Sangermano R, Roosing S, et al. Heterozygous deep-intronic variants and deletions in ABCA4 in persons with retinal dystrophies and one exonic ABCA4 variant. Hum Mutat. 2015;36:43–47.
Fadaie Z, Khan M, Del Pozo-Valero M, et al. Identification of splice defects due to noncanonical splice site or deep-intronic variants in ABCA4. Hum Mutat. 2019;40:2365–2376. PubMed PMC
Maugeri A, van Driel MA, van de Pol DJR, et al. The 2588G -> C mutation in the ABCR gene is a mild frequent founder mutation in the western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am J Hum Genet. 1999;64:1024–1035. PubMed PMC
Rivera A, White K, Stohr H, et al. A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet. 2000;67:800–813. PubMed PMC
Jaakson K, Zernant J, Kulm M, et al. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat. 2003;22:395–403.
Maia-Lopes S, Aguirre-Lamban J, Castelo-Branco M, Riveiro-Alvarez R, Ayuso C, Silva ED. ABCA4 mutations in Portuguese Stargardt patients: identification of new mutations and their phenotypic analysis. Mol Vis. 2009;15:584–591. PubMed PMC
Albert S, Garanto A, Sangermano R, et al. Identification and rescue of splice defects caused by two neighboring deep-intronic ABCA4 mutations underlying Stargardt disease. Am J Hum Genet. 2018;102:517–527. PubMed PMC
Charbel Issa P, Barnard AR, Herrmann P, Washington I, MacLaren RE. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A. 2015;112:8415–8420. PubMed PMC
Allocca M, Doria M, Petrillo M, et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest. 2008;118:1955–1964. PubMed PMC
Lu B, Malcuit C, Wang S, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27:2126–2135.
Cremers FPM, Cornelis SS, Runhart EH, Astuti GDN. Author response: penetrance of the ABCA4 p.Asn1868Ile allele in Stargardt disease. Invest Ophthalmol Vis Sci. 2018;59:5566–5568.
Runhart EH, Sangermano R, Cornelis SS, et al. The common ABCA4 variant p.Asn1868Ile shows nonpenetrance and variable expression of Stargardt disease when present in trans with severe variants. Invest Ophthalmol Vis Sci. 2018;59:3220–3231.
Zernant J, Lee W, Collison FT, et al. Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J Med Genet. 2017;54:404–412. PubMed PMC
Hafez M, Hausner G. Convergent evolution of twintron-like configurations: one is never enough. RNA Biol. 2015;12:1275–1288. PubMed PMC
Zernant J, Lee W, Nagasaki T, et al. Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes. Cold Spring Harb Mol Case Stud. 2018;4:a002733. PubMed PMC
Nassisi M, Mohand-Said S, Andrieu C, et al. Prevalence of ABCA4 deep-intronic variants and related phenotype in an unsolved “one-hit” cohort with Stargardt disease. Int J Mol Sci. 2019;20:5053. PubMed PMC
Runhart EH, Valkenburg D, Cornelis SS, et al. Late-onset Stargardt disease due to mild, deep-intronic ABCA4 alleles. Invest Ophthalmol Vis Sci. 2019;60:4249–4256.
Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211. PubMed PMC
McVey M, Lee SE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 2008;24:529–538. PubMed PMC
Vissers LE, Bhatt SS, Janssen IM, et al. Rare pathogenic microdeletions and tandem duplications are microhomology-mediated and stimulated by local genomic architecture. Hum Mol Genet. 2009;18:3579–3593.
Bacolla A, Wells RD. Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem. 2004;279:47411–47414.
Fingert JH, Eliason DA, Phillips NC, Lotery AJ, Sheffield VC, Stone EM. Case of Stargardt disease caused by uniparental isodisomy. Arch Ophthalmol. 2006;124:744–745.
Riveiro-Alvarez R, Valverde D, Lorda-Sanchez I, et al. Partial paternal uniparental disomy (UPD) of chromosome 1 in a patient with Stargardt disease. Mol Vis. 2007;13:96–101. PubMed PMC
Liehr T. Cytogenetic contribution to uniparental disomy (UPD). Mol Cytogenet. 2010;3:8. PubMed PMC
Rivolta C, Berson EL, Dryja TP. Paternal uniparental heterodisomy with partial isodisomy of chromosome 1 in a patient with retinitis pigmentosa without hearing loss and a missense mutation in the Usher syndrome type II gene USH2A. Arch Ophthalmol. 2002;120:1566–1571.
Roosing S, van den Born LI, Hoyng CB, et al. Maternal uniparental isodisomy of chromosome 6 reveals a TULP1 mutation as a novel cause of cone dysfunction. Ophthalmology. 2013;120:1239–1246.
Thompson DA, Gyurus P, Fleischer LL, et al. Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci. 2000;41:4293–4299.
Thompson DA, McHenry CL, Li Y, et al. Retinal dystrophy due to paternal isodisomy for chromosome 1 or chromosome 2, with homoallelism for mutations in RPE65 or MERTK, respectively. Am J Hum Genet. 2002;70:224–229.
Wiszniewski W, Lewis RA, Lupski JR. Achromatopsia: the CNGB3 p.T383fsX mutation results from a founder effect and is responsible for the visual phenotype in the original report of uniparental disomy 14. Hum Genet. 2007;121:433–439.
Souzeau E, Thompson JA, McLaren TL, et al. Maternal uniparental isodisomy of chromosome 6 unmasks a novel variant in TULP1 in a patient with early onset retinal dystrophy. Mol Vis. 2018;24:478–484. PubMed PMC
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48 e524.
The need for widely available genomic testing in rare eye diseases: an ERN-EYE position statement
Association of Sex With Frequent and Mild ABCA4 Alleles in Stargardt Disease