Towards Uncovering the Role of Incomplete Penetrance in Maculopathies through Sequencing of 105 Disease-Associated Genes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P30 EY000331
NEI NIH HHS - United States
R01 EY028954
NEI NIH HHS - United States
R01 EY028203
NEI NIH HHS - United States
R01 EY029315
NEI NIH HHS - United States
P30 EY019007
NEI NIH HHS - United States
PubMed
38540785
PubMed Central
PMC10967834
DOI
10.3390/biom14030367
PII: biom14030367
Knihovny.cz E-zdroje
- Klíčová slova
- inherited, macula, maculopathies, penetrance, retinal, sequencing,
- MeSH
- ABC transportéry genetika MeSH
- fenotyp MeSH
- kadherinové proteiny MeSH
- lidé MeSH
- makulární degenerace * genetika MeSH
- mutace MeSH
- oční proteiny MeSH
- penetrance MeSH
- proteiny nervové tkáně genetika MeSH
- retina MeSH
- rodokmen MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry MeSH
- ABCA4 protein, human MeSH Prohlížeč
- CDHR1 protein, human MeSH Prohlížeč
- kadherinové proteiny MeSH
- oční proteiny MeSH
- proteiny nervové tkáně MeSH
- RP1L1 protein, human MeSH Prohlížeč
Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.
Blueprint Genetics 02150 Espoo Finland
Center for Medical Genetics Ghent University Hospital 9000 Ghent Belgium
Children's Clinical University Hospital LV 1004 Riga Latvia
College of Optometry University of Houston Houston TX 77004 USA
Datana Solutions 54 530 Wroclaw Poland
Department of Biomolecular Medicine Ghent University 9000 Ghent Belgium
Department of Histology and Embryology Medical University of Warsaw 02 004 Warsaw Poland
Department of Human Genetics Radboud University Medical Center 6500 HB Nijmegen The Netherlands
Department of Medical and Surgical Sciences University of Bologna 40127 Bologna Italy
Department of Medical Genetics Koc University School of Medicine 34450 Istanbul Turkey
Department of Ophthalmology Columbia University New York NY 10027 USA
Department of Ophthalmology Radboud University Medical Center 6525 GA Nijmegen The Netherlands
Department of Ophthalmology Riga Stradins University LV 1007 Riga Latvia
Department of Ophthalmology The Jikei University School of Medicine Tokyo 105 8461 Japan
Department of Pathology and Cell Biology Columbia University New York NY 10027 USA
Department of Pharmacy and Biotechnology University of Bologna 40127 Bologna Italy
Department of Precision Medicine University of Campania 'Luigi Vanvitelli' 80138 Naples Italy
Eye Department Greenlane Clinical Centre Auckland District Health Board Auckland 1142 New Zealand
Eye Hospital University Medical Centre Ljubljana 1000 Ljubljana Slovenia
Faculty of Medicine University of Ljubljana 1000 Ljubljana Slovenia
Institute of Clinical Human Genetics University Hospital Regensburg 93053 Regensburg Germany
Institute of Human Genetics University Hospital of Cologne 50937 Cologne Germany
Institute of Human Genetics University of Regensburg 93053 Regensburg Germany
Institute of Molecular and Clinical Ophthalmology Basel 4031 Basel Switzerland
Instituto de Genética Ocular São Paulo 04552 050 SP Brazil
Jules Stein Eye Institute Los Angeles CA 90095 USA
Ophthalmic Genetics Unit OMMA Ophthalmological Institute of Athens 115 25 Athens Greece
Oxford Eye Hospital Oxford University NHS Foundation Trust Oxford OX3 9DU UK
St John of Jerusalem Eye Hospital Group East Jerusalem 91198 Palestine
Telethon Institute of Genetics and Medicine 80078 Pozzuoli Italy
The Rotterdam Eye Hospital 3011 BH Rotterdam The Netherlands
Unit of Medical Genetics IRCCS Azienda Ospedaliero Universitaria di Bologna 40138 Bologna Italy
Univ Lille Inserm CHU Lille U1172 LilNCog Lille Neuroscience and Cognition F 59000 Lille France
Zobrazit více v PubMed
Boon C.J., Klevering B.J., Leroy B.P., Hoyng C.B., Keunen J.E., den Hollander A.I. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog. Retin. Eye Res. 2009;28:187–205. doi: 10.1016/j.preteyeres.2009.04.002. PubMed DOI
Small K.W. North Carolina macular dystrophy, revisited. Ophthalmology. 1989;96:1747–1754. doi: 10.1016/S0161-6420(89)32655-8. PubMed DOI
Lefler W.H., Wadsworth J.A., Sidbury J.B., Jr. Hereditary macular degeneration and amino-aciduria. Am. J. Ophthalmol. 1971;71:224–230. doi: 10.1016/0002-9394(71)90394-1. PubMed DOI
Hamel C.P. Cone rod dystrophies. Orphanet J. Rare Dis. 2007;2:7. doi: 10.1186/1750-1172-2-7. PubMed DOI PMC
Stargardt K. Über familiäre, progressive Degeneration in der Maculagegend des Auges. Albrecht Graefes Arch. Ophthalmol. 1909;71:534–550. doi: 10.1007/BF01961301. DOI
Fishman G.A. Fundus Flavimaculatus: A Clinical Classification. Arch. Ophthalmol. 1976;94:2061–2067. doi: 10.1001/archopht.1976.03910040721003. PubMed DOI
Birtel J., Eisenberger T., Gliem M., Müller P.L., Herrmann P., Betz C., Zahnleiter D., Neuhaus C., Lenzner S., Holz F.G., et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci. Rep. 2018;8:4824. doi: 10.1038/s41598-018-22096-0. PubMed DOI PMC
Boulanger-Scemama E., Mohand-Saïd S., El Shamieh S., Démontant V., Condroyer C., Antonio A., Michiels C., Boyard F., Saraiva J.-P., Letexier M., et al. Phenotype Analysis of Retinal Dystrophies in Light of the Underlying Genetic Defects: Application to Cone and Cone-Rod Dystrophies. Int. J. Mol. Sci. 2019;20:4854. doi: 10.3390/ijms20194854. PubMed DOI PMC
Kersten E., Geerlings M.J., Pauper M., Corominas J., Bakker B., Altay L., Fauser S., de Jong E.K., Hoyng C.B., den Hollander A.I. Genetic screening for macular dystrophies in patients clinically diagnosed with dry age-related macular degeneration. Clin. Genet. 2018;94:569–574. doi: 10.1111/cge.13447. PubMed DOI PMC
Runhart E.H., Sangermano R., Cornelis S.S., Verheij J., Plomp A.S., Boon C.J.F., Lugtenberg D., Roosing S., Bax N.M., Blokland E.A.W., et al. The Common ABCA4 Variant p.Asn1868Ile Shows Nonpenetrance and Variable Expression of Stargardt Disease When Present in trans With Severe Variants. Investig. Ophthalmol. Vis. Sci. 2018;59:3220–3231. doi: 10.1167/iovs.18-23881. PubMed DOI
Cornelis S.S., Bax N.M., Zernant J., Allikmets R., Fritsche L.G., den Dunnen J.T., Ajmal M., Hoyng C.B., Cremers F.P. In Silico Functional Meta-Analysis of 5,962 ABCA4 Variants in 3,928 Retinal Dystrophy Cases. Hum. Mutat. 2017;38:400–408. doi: 10.1002/humu.23165. PubMed DOI
Runhart E.H., Valkenburg D., Cornelis S.S., Khan M., Sangermano R., Albert S., Bax N.M., Astuti G.D.N., Gilissen C., Pott J.R., et al. Late-Onset Stargardt Disease Due to Mild, Deep-Intronic ABCA4 Alleles. Investig. Ophthalmol. Vis. Sci. 2019;60:4249–4256. doi: 10.1167/iovs.19-27524. PubMed DOI
Zernant J., Lee W., Collison F.T., Fishman G.A., Sergeev Y.V., Schuerch K., Sparrow J.R., Tsang S.H., Allikmets R. Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J. Med. Genet. 2017;54:404–412. doi: 10.1136/jmedgenet-2017-104540. PubMed DOI PMC
Boon C.J., Klevering B.J., Cremers F.P., Zonneveld-Vrieling M.N., Theelen T., Den Hollander A.I., Hoyng C.B. Central areolar choroidal dystrophy. Ophthalmology. 2009;116:771–782.e771. doi: 10.1016/j.ophtha.2008.12.019. PubMed DOI
Michaelides M., Holder G.E., Bradshaw K., Hunt D.M., Moore A.T. Cone-rod dystrophy, intrafamilial variability, and incomplete penetrance associated with the R172W mutation in the peripherin/RDS gene. Ophthalmology. 2005;112:1592–1598. doi: 10.1016/j.ophtha.2005.04.004. PubMed DOI
Soucy M., Kolesnikova M., Kim A.H., Tsang S.H. Phenotypic variability in PRPH2 as demonstrated by a family with incomplete penetrance of autosomal dominant cone-rod dystrophy. Doc. Ophthalmol. 2023;146:267–272. doi: 10.1007/s10633-022-09916-5. PubMed DOI
Davidson A.E., Sergouniotis P.I., Mackay D.S., Wright G.A., Waseem N.H., Michaelides M., Holder G.E., Robson A.G., Moore A.T., Plagnol V., et al. RP1L1 variants are associated with a spectrum of inherited retinal diseases including retinitis pigmentosa and occult macular dystrophy. Hum. Mutat. 2013;34:506–514. doi: 10.1002/humu.22264. PubMed DOI
Zobor D., Zobor G., Hipp S., Baumann B., Weisschuh N., Biskup S., Sliesoraityte I., Zrenner E., Kohl S. Phenotype Variations Caused by Mutations in the RP1L1 Gene in a Large Mainly German Cohort. Investig. Ophthalmol. Vis. Sci. 2018;59:3041–3052. doi: 10.1167/iovs.18-24033. PubMed DOI
Akahori M., Tsunoda K., Miyake Y., Fukuda Y., Ishiura H., Tsuji S., Usui T., Hatase T., Nakamura M., Ohde H., et al. Dominant mutations in RP1L1 are responsible for occult macular dystrophy. Am. J. Hum. Genet. 2010;87:424–429. doi: 10.1016/j.ajhg.2010.08.009. PubMed DOI PMC
Fujinami K., Kameya S., Kikuchi S., Ueno S., Kondo M., Hayashi T., Shinoda K., Machida S., Kuniyoshi K., Kawamura Y., et al. Novel RP1L1 Variants and Genotype-Photoreceptor Microstructural Phenotype Associations in Cohort of Japanese Patients With Occult Macular Dystrophy. Investig. Ophthalmol. Vis. Sci. 2016;57:4837–4846. doi: 10.1167/iovs.16-19670. PubMed DOI
Siemiatkowska A.M., Schuurs-Hoeijmakers J.H., Bosch D.G., Boonstra F.N., Riemslag F.C., Ruiter M., de Vries B.B., den Hollander A.I., Collin R.W., Cremers F.P. Nonpenetrance of the most frequent autosomal recessive leber congenital amaurosis mutation in NMNAT1. JAMA Ophthalmol. 2014;132:1002–1004. doi: 10.1001/jamaophthalmol.2014.983. PubMed DOI
Hitti-Malin R.J., Dhaenens C.M., Panneman D.M., Corradi Z., Khan M., den Hollander A.I., Farrar G.J., Gilissen C., Hoischen A., van de Vorst M., et al. Using single molecule Molecular Inversion Probes as a cost-effective, high-throughput sequencing approach to target all genes and loci associated with macular diseases. Hum. Mutat. 2022;43:2234–2250. doi: 10.1002/humu.24489. PubMed DOI PMC
Khan M., Cornelis S.S., Khan M.I., Elmelik D., Manders E., Bakker S., Derks R., Neveling K., van de Vorst M., Gilissen C., et al. Cost-effective molecular inversion probe-based ABCA4 sequencing reveals deep-intronic variants in Stargardt disease. Hum. Mutat. 2019;40:1749–1759. doi: 10.1002/humu.23787. PubMed DOI
Jaganathan K., Kyriazopoulou Panagiotopoulou S., McRae J.F., Darbandi S.F., Knowles D., Li Y.I., Kosmicki J.A., Arbelaez J., Cui W., Schwartz G.B., et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell. 2019;176:535–548.e24. doi: 10.1016/j.cell.2018.12.015. PubMed DOI
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Sangermano R., Khan M., Cornelis S.S., Richelle V., Albert S., Garanto A., Elmelik D., Qamar R., Lugtenberg D., van den Born L.I., et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28:100–110. doi: 10.1101/gr.226621.117. PubMed DOI PMC
Sangermano R., Bax N.M., Bauwens M., van den Born L.I., De Baere E., Garanto A., Collin R.W., Goercharn-Ramlal A.S., den Engelsman-van Dijk A.H., Rohrschneider K., et al. Photoreceptor Progenitor mRNA Analysis Reveals Exon Skipping Resulting from the ABCA4 c.5461-10T→C Mutation in Stargardt Disease. Ophthalmology. 2016;123:1375–1385. doi: 10.1016/j.ophtha.2016.01.053. PubMed DOI
Fadaie Z., Neveling K., Mantere T., Derks R., Haer-Wigman L., den Ouden A., Kwint M., O’Gorman L., Valkenburg D., Hoyng C.B., et al. Long-read technologies identify a hidden inverted duplication in a family with choroideremia. HGG Adv. 2021;2:100046. doi: 10.1016/j.xhgg.2021.100046. PubMed DOI PMC
de Laat P., Smeitink J.A.M., Janssen M.C.H., Keunen J.E.E., Boon C.J.F. Mitochondrial retinal dystrophy associated with the m.3243A>G mutation. Ophthalmology. 2013;120:2684–2696. doi: 10.1016/j.ophtha.2013.05.013. PubMed DOI
Khan M., Cornelis S.S., Pozo-Valero M.D., Whelan L., Runhart E.H., Mishra K., Bults F., AlSwaiti Y., AlTalbishi A., De Baere E., et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet. Med. 2020;22:1235–1246. doi: 10.1038/s41436-020-0787-4. PubMed DOI
Corradi Z., Khan M., Hitti-Malin R., Mishra K., Whelan L., Cornelis S.S., Group A.B.-S., Hoyng C.B., Kampjarvi K., Klaver C.C.W., et al. Targeted sequencing and in vitro splice assays shed light on ABCA4-associated retinopathies missing heritability. HGG Adv. 2023;4:100237. doi: 10.1016/j.xhgg.2023.100237. PubMed DOI PMC
Albert S., Garanto A., Sangermano R., Khan M., Bax N.M., Hoyng C.B., Zernant J., Lee W., Allikmets R., Collin R.W.J., et al. Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease. Am. J. Hum. Genet. 2018;102:517–527. doi: 10.1016/j.ajhg.2018.02.008. PubMed DOI PMC
Braun T.A., Mullins R.F., Wagner A.H., Andorf J.L., Johnston R.M., Bakall B.B., Deluca A.P., Fishman G.A., Lam B.L., Weleber R.G., et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum. Mol. Genet. 2013;22:5136–5145. doi: 10.1093/hmg/ddt367. PubMed DOI PMC
Cornelis S.S., Bauwens M., Haer-Wigman L., De Bruyne M., Pantrangi M., De Baere E., Hufnagel R.B., Dhaenens C.M., Cremers F.P. Compendium of clinical variant classification for 2,247 unique ABCA4 variants to improve genetic medicine access for Stargardt Disease. medRxiv. 2023 doi: 10.1101/2023.04.24.23288782. DOI
Holtan J.P., Aukrust I., Jansson R.W., Berland S., Bruland O., Gjerde B.L., Stokowy T., Bojovic O., Forsaa V., Austeng D., et al. Clinical features and molecular genetics of patients with ABCA4-retinal dystrophies. Acta Ophthalmol. 2021;99:e733–e746. doi: 10.1111/aos.14679. PubMed DOI
Bech-Hansen N.T., Naylor M.J., Maybaum T.A., Pearce W.G., Koop B., Fishman G.A., Mets M., Musarella M.A., Boycott K.M. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. 1998;19:264–267. doi: 10.1038/947. PubMed DOI
Kimchi A., Meiner V., Silverstein S., Macarov M., Mor-Shaked H., Blumenfeld A., Audo I., Zeitz C., Mechoulam H., Banin E., et al. An Ashkenazi Jewish founder mutation in CACNA1F causes retinal phenotype in both hemizygous males and heterozygous female carriers. Ophthalmic Genet. 2019;40:443–448. doi: 10.1080/13816810.2019.1681008. PubMed DOI
Mantyjarvi M., Nurmenniemi P., Partanen J., Myohanen T., Peippo M., Alitalo T. Clinical features and a follow-up study in a family with X-linked progressive cone-rod dystrophy. Acta Ophthalmol. Scand. 2001;79:359–365. doi: 10.1034/j.1600-0420.2001.079004359.x. PubMed DOI
Rattner A., Smallwood P.M., Williams J., Cooke C., Savchenko A., Lyubarsky A., Pugh E.N., Nathans J. A photoreceptor-specific cadherin is essential for the structural integrity of the outer segment and for photoreceptor survival. Neuron. 2001;32:775–786. doi: 10.1016/S0896-6273(01)00531-1. PubMed DOI
Stingl K., Mayer A.K., Llavona P., Mulahasanovic L., Rudolph G., Jacobson S.G., Zrenner E., Kohl S., Wissinger B., Weisschuh N. CDHR1 mutations in retinal dystrophies. Sci. Rep. 2017;7:6992. doi: 10.1038/s41598-017-07117-8. PubMed DOI PMC
Charbel Issa P., Gliem M., Yusuf I.H., Birtel J., Müller P.L., Mangold E., Downes S.M., MacLaren R.E., Betz C., Bolz H.J. A Specific Macula-Predominant Retinal Phenotype Is Associated With the CDHR1 Variant c.783G>A, a Silent Mutation Leading to In-Frame Exon Skipping. Investig. Ophthalmol. Vis. Sci. 2019;60:3388–3397. doi: 10.1167/iovs.18-26415. PubMed DOI
Ba-Abbad R., Robson A.G., Mahroo O.A., Wright G., Schiff E., Duignan E.S., Michaelides M., Arno G., Webster A.R. A clinical study of patients with novel CDHR1 genotypes associated with late-onset macular dystrophy. Eye. 2021;35:1482–1489. doi: 10.1038/s41433-020-1045-3. PubMed DOI PMC
Burkard M., Kohl S., Kratzig T., Tanimoto N., Brennenstuhl C., Bausch A.E., Junger K., Reuter P., Sothilingam V., Beck S.C., et al. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J. Clin. Investig. 2018;128:5663–5675. doi: 10.1172/JCI96098. PubMed DOI PMC
Kohl S., Varsanyi B., Antunes G.A., Baumann B., Hoyng C.B., Jagle H., Rosenberg T., Kellner U., Lorenz B., Salati R., et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet. 2005;13:302–308. doi: 10.1038/sj.ejhg.5201269. PubMed DOI
Lee W., Zernant J., Nagasaki T., Molday L.L., Su P.Y., Fishman G.A., Tsang S.H., Molday R.S., Allikmets R. Cis-acting modifiers in the ABCA4 locus contribute to the penetrance of the major disease-causing variant in Stargardt disease. Hum. Mol. Genet. 2021;30:1293–1304. doi: 10.1093/hmg/ddab122. PubMed DOI PMC
Hamel C.P., Griffoin J.M., Bazalgette C., Lasquellec L., Duval P.A., Bareil C., Beaufrère L., Bonnet S., Eliaou C., Marlhens F., et al. Molecular genetics of pigmentary retinopathies: Identification of mutations in CHM, RDS, RHO, RPE65, USH2A and XLRS1 genes. J. Fr. Ophtalmol. 2000;23:985–995. PubMed
Runhart E.H., Dhooge P., Meester-Smoor M., Pas J., Pott J.W.R., van Leeuwen R., Kroes H.Y., Bergen A.A., de Jong-Hesse Y., Thiadens A.A., et al. Stargardt disease: Monitoring incidence and diagnostic trends in the Netherlands using a nationwide disease registry. Acta Ophthalmol. 2022;100:395–402. doi: 10.1111/aos.14996. PubMed DOI PMC
Poloschek C.M., Bach M., Lagreze W.A., Glaus E., Lemke J.R., Berger W., Neidhardt J. ABCA4 and ROM1: Implications for modification of the PRPH2-associated macular dystrophy phenotype. Investig. Ophthalmol. Vis. Sci. 2010;51:4253–4265. doi: 10.1167/iovs.09-4655. PubMed DOI
Rodriguez-Munoz A., Aller E., Jaijo T., Gonzalez-Garcia E., Cabrera-Peset A., Gallego-Pinazo R., Udaondo P., Salom D., Garcia-Garcia G., Millan J.M. Expanding the Clinical and Molecular Heterogeneity of Nonsyndromic Inherited Retinal Dystrophies. J. Mol. Diagn. 2020;22:532–543. doi: 10.1016/j.jmoldx.2020.01.003. PubMed DOI
Pfau M., Zein W.M., Huryn L.A., Cukras C.A., Jeffrey B.G., Hufnagel R.B., Brooks B.P. Genotype-Phenotype Association in ABCA4-Associated Retinopathy. Adv. Exp. Med. Biol. 2023;1415:289–295. doi: 10.1007/978-3-031-27681-1_42. PubMed DOI PMC
Kim D.J., Woo S.J., Joo K. Phenotypic and Genetic Alterations in Adult-Onset Cone and Cone-Rod Dystrophy. Ophthalmic Res. 2024;67:9–22. doi: 10.1159/000535430. PubMed DOI
Kajiwara K., Berson E.L., Dryja T.P. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science. 1994;264:1604–1608. doi: 10.1126/science.8202715. PubMed DOI
Loewen C.J., Moritz O.L., Molday R.S. Molecular characterization of peripherin-2 and rom-1 mutants responsible for digenic retinitis pigmentosa. J. Biol. Chem. 2001;276:22388–22396. doi: 10.1074/jbc.M011710200. PubMed DOI
Biswas P., Villanueva A.L., Soto-Hermida A., Duncan J.L., Matsui H., Borooah S., Kurmanov B., Richard G., Khan S.Y., Branham K., et al. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet. 2021;17:e1009848. doi: 10.1371/journal.pgen.1009848. PubMed DOI PMC
Boulanger-Scemama E., El Shamieh S., Démontant V., Condroyer C., Antonio A., Michiels C., Boyard F., Saraiva J.P., Letexier M., Souied E., et al. Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: Mutation spectrum and new genotype-phenotype correlation. Orphanet J. Rare Dis. 2015;10:85. doi: 10.1186/s13023-015-0300-3. PubMed DOI PMC
Zernant J., Lee W., Wang J., Goetz K., Ullah E., Nagasaki T., Su P.Y., Fishman G.A., Tsang S.H., Tumminia S.J., et al. Rare and common variants in ROM1 and PRPH2 genes trans-modify Stargardt/ABCA4 disease. PLoS Genet. 2022;18:e1010129. doi: 10.1371/journal.pgen.1010129. PubMed DOI PMC
Ma C.J., Lee W., Stong N., Zernant J., Chang S., Goldstein D., Nagasaki T., Allikmets R. Late-onset pattern macular dystrophy mimicking ABCA4 and PRPH2 disease is caused by a homozygous frameshift mutation in ROM1. Cold Spring Harb. Mol. Case Stud. 2019;5:a003624. doi: 10.1101/mcs.a003624. PubMed DOI PMC
Yahya S., Smith C.E.L., Poulter J.A., McKibbin M., Arno G., Ellingford J., Kämpjärvi K., Khan M.I., Cremers F.P.M., Hardcastle A.J., et al. Late-Onset Autosomal Dominant Macular Degeneration Caused by Deletion of the CRX Gene. Ophthalmology. 2023;130:68–76. doi: 10.1016/j.ophtha.2022.07.023. PubMed DOI
Saksens N.T., Fleckenstein M., Schmitz-Valckenberg S., Holz F.G., den Hollander A.I., Keunen J.E., Boon C.J., Hoyng C.B. Macular dystrophies mimicking age-related macular degeneration. Prog. Retin. Eye Res. 2014;39:23–57. doi: 10.1016/j.preteyeres.2013.11.001. PubMed DOI
Boon C.J., Klevering B.J., Hoyng C.B., Zonneveld-Vrieling M.N., Nabuurs S.B., Blokland E., Cremers F.P., den Hollander A.I. Basal laminar drusen caused by compound heterozygous variants in the CFH gene. Am. J. Hum. Genet. 2008;82:516–523. doi: 10.1016/j.ajhg.2007.11.007. PubMed DOI PMC
Ratnapriya R., Zhan X., Fariss R.N., Branham K.E., Zipprer D., Chakarova C.F., Sergeev Y.V., Campos M.M., Othman M., Friedman J.S., et al. Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Hum. Mol. Genet. 2014;23:5827–5837. doi: 10.1093/hmg/ddu276. PubMed DOI PMC
Chen W., Stambolian D., Edwards A.O., Branham K.E., Othman M., Jakobsdottir J., Tosakulwong N., Pericak-Vance M.A., Campochiaro P.A., Klein M.L., et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc. Natl. Acad. Sci. USA. 2010;107:7401–7406. doi: 10.1073/pnas.0912702107. PubMed DOI PMC
Allikmets R. Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am. J. Hum. Genet. 2000;67:487–491. doi: 10.1086/303018. PubMed DOI PMC
Fritsche L.G., Fleckenstein M., Fiebig B.S., Schmitz-Valckenberg S., Bindewald-Wittich A., Keilhauer C.N., Renner A.B., Mackensen F., Mößner A., Pauleikhoff D., et al. A subgroup of age-related macular degeneration is associated with mono-allelic sequence variants in the ABCA4 gene. Investig. Ophthalmol. Vis. Sci. 2012;53:2112–2118. doi: 10.1167/iovs.11-8785. PubMed DOI
Fisher S.A., Rivera A., Fritsche L.G., Keilhauer C.N., Lichtner P., Meitinger T., Rudolph G., Weber B.H. Case-control genetic association study of fibulin-6 (FBLN6 or HMCN1) variants in age-related macular degeneration (AMD) Hum. Mutat. 2007;28:406–413. doi: 10.1002/humu.20464. PubMed DOI
Schultz D.W., Klein M.L., Humpert A.J., Luzier C.W., Persun V., Schain M., Mahan A., Runckel C., Cassera M., Vittal V., et al. Analysis of the ARMD1 locus: Evidence that a mutation in HEMICENTIN-1 is associated with age-related macular degeneration in a large family. Hum. Mol. Genet. 2003;12:3315–3323. doi: 10.1093/hmg/ddg348. PubMed DOI
Pras E., Kristal D., Shoshany N., Volodarsky D., Vulih I., Celniker G., Isakov O., Shomron N., Pras E. Rare genetic variants in Tunisian Jewish patients suffering from age-related macular degeneration. J. Med. Genet. 2015;52:484–492. doi: 10.1136/jmedgenet-2015-103130. PubMed DOI
Goto Y., Nonaka I., Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348:651–653. doi: 10.1038/348651a0. PubMed DOI
Kobayashi Y., Momoi M.Y., Tominaga K., Momoi T., Nihei K., Yanagisawa M., Kagawa Y., Ohta S. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) Biochem. Biophys. Res. Commun. 1990;173:816–822. doi: 10.1016/S0006-291X(05)80860-5. PubMed DOI
Bonte C.A., Matthijs G.L., Cassiman J.J., Leys A.M. Macular pattern dystrophy in patients with deafness and diabetes. Retina. 1997;17:216–221. doi: 10.1097/00006982-199717030-00008. PubMed DOI
Massin P., Dubois-Laforgue D., Meas T., Laloi-Michelin M., Gin H., Bauduceau B., Bellanné-Chantelot C., Bertin E., Blickle J.F., Bouhanick B., et al. Retinal and renal complications in patients with a mutation of mitochondrial DNA at position 3,243 (maternally inherited diabetes and deafness). A case-control study. Diabetologia. 2008;51:1664–1670. doi: 10.1007/s00125-008-1073-1. PubMed DOI
Tanna P., Strauss R.W., Fujinami K., Michaelides M. Stargardt disease: Clinical features, molecular genetics, animal models and therapeutic options. Br. J. Ophthalmol. 2017;101:25–30. doi: 10.1136/bjophthalmol-2016-308823. PubMed DOI PMC
Cremers F.P.M., Lee W., Collin R.W.J., Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog. Retin. Eye Res. 2020;79:100861. doi: 10.1016/j.preteyeres.2020.100861. PubMed DOI PMC
Cornelis S.S., Runhart E.H., Bauwens M., Corradi Z., De Baere E., Roosing S., Haer-Wigman L., Dhaenens C.M., Vulto-van Silfhout A.T., Cremers F.P.M. Personalized genetic counseling for Stargardt disease: Offspring risk estimates based on variant severity. Am. J. Hum. Genet. 2022;109:498–507. doi: 10.1016/j.ajhg.2022.01.008. PubMed DOI PMC
Riepe T.V., Khan M., Roosing S., Cremers F.P.M., t Hoen P.A.C. Benchmarking deep learning splice prediction tools using functional splice assays. Hum. Mutat. 2021;42:799–810. doi: 10.1002/humu.24212. PubMed DOI PMC
Hanany M., Rivolta C., Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc. Natl. Acad. Sci. USA. 2020;117:2710–2716. doi: 10.1073/pnas.1913179117. PubMed DOI PMC