Towards Uncovering the Role of Incomplete Penetrance in Maculopathies through Sequencing of 105 Disease-Associated Genes

. 2024 Mar 19 ; 14 (3) : . [epub] 20240319

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38540785

Grantová podpora
P30 EY000331 NEI NIH HHS - United States
R01 EY028954 NEI NIH HHS - United States
R01 EY028203 NEI NIH HHS - United States
R01 EY029315 NEI NIH HHS - United States
P30 EY019007 NEI NIH HHS - United States

Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.

Australian Inherited Retinal Disease Registry and DNA Bank Department of Medical Technology and Physics Sir Charles Gairdner Hospital Nedlands WA 6009 Australia

Blueprint Genetics 02150 Espoo Finland

Center for Biomedical Network Research on Rare Diseases Instituto de Salud Carlos 3 28029 Madrid Spain

Center for Human Genetics and Pharmacogenomics Faculty of Medicine University of Maribor 2000 Maribor Slovenia

Center for Medical Genetics Ghent University Hospital 9000 Ghent Belgium

Centre for Ophthalmology and Visual Science The University of Western Australia Nedlands WA 6009 Australia

Children's Clinical University Hospital LV 1004 Riga Latvia

College of Optometry University of Houston Houston TX 77004 USA

Datana Solutions 54 530 Wroclaw Poland

Department of Biomolecular Medicine Ghent University 9000 Ghent Belgium

Department of Genetics Health Research Institute Fundación Jiménez Díaz University Hospital Universidad Autónoma de Madrid 28049 Madrid Spain

Department of Histology and Embryology Medical University of Warsaw 02 004 Warsaw Poland

Department of Human Genetics Radboud University Medical Center 6500 HB Nijmegen The Netherlands

Department of Medical and Surgical Sciences University of Bologna 40127 Bologna Italy

Department of Medical Genetics Koc University School of Medicine 34450 Istanbul Turkey

Department of Molecular Genetics Institute of Pathology Faculty of Medicine University of Ljubljana 1000 Ljubljana Slovenia

Department of Ophthalmology 1st Faculty of Medicine Charles University and General University Hospital Prague 128 08 Prague Czech Republic

Department of Ophthalmology and Visual Sciences Universidade Federal de São Paulo São Paulo 04023 062 SP Brazil

Department of Ophthalmology Columbia University New York NY 10027 USA

Department of Ophthalmology Hadassah Medical Center Faculty of Medicine The Hebrew University of Jerusalem Jerusalem 91120 Israel

Department of Ophthalmology Medical University of Warsaw SPKSO Ophthalmic University Hospital 03 709 Warsaw Poland

Department of Ophthalmology New Zealand National Eye Centre Faculty of Medical and Health Sciences The University of Auckland Grafton Auckland 1023 New Zealand

Department of Ophthalmology Radboud University Medical Center 6525 GA Nijmegen The Netherlands

Department of Ophthalmology Riga Stradins University LV 1007 Riga Latvia

Department of Ophthalmology The Jikei University School of Medicine Tokyo 105 8461 Japan

Department of Paediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine Charles University and General University Hospital Prague 128 08 Prague Czech Republic

Department of Pathology and Cell Biology Columbia University New York NY 10027 USA

Department of Pharmacy and Biotechnology University of Bologna 40127 Bologna Italy

Department of Precision Medicine University of Campania 'Luigi Vanvitelli' 80138 Naples Italy

Division of Molecular Medicine Leeds Institute of Medical Research St James's University Hospital University of Leeds Leeds LS9 7TF UK

Eye Clinic Multidisciplinary Department of Medical Surgical and Dental Sciences University of Campania 'Luigi Vanvitelli' 80131 Naples Italy

Eye Department Greenlane Clinical Centre Auckland District Health Board Auckland 1142 New Zealand

Eye Hospital University Medical Centre Ljubljana 1000 Ljubljana Slovenia

Faculty of Medicine University of Ljubljana 1000 Ljubljana Slovenia

Institute of Clinical Human Genetics University Hospital Regensburg 93053 Regensburg Germany

Institute of Human Genetics University Hospital of Cologne 50937 Cologne Germany

Institute of Human Genetics University of Regensburg 93053 Regensburg Germany

Institute of Molecular and Clinical Ophthalmology Basel 4031 Basel Switzerland

Instituto de Genética Ocular São Paulo 04552 050 SP Brazil

Jules Stein Eye Institute Los Angeles CA 90095 USA

Laboratorio de Terapia Molecular y Celular Fundación Instituto Leloir CONICET Buenos Aires 1405 Argentina

Nuffield Laboratory of Ophthalmology Nuffield Department of Clinical Neurosciences Oxford University Oxford OX3 9DU UK

Ophthalmic Genetics Unit OMMA Ophthalmological Institute of Athens 115 25 Athens Greece

Ophthalmology University of California Los Angeles David Geffen School of Medicine Los Angeles CA 90095 USA

Oxford Eye Hospital Oxford University NHS Foundation Trust Oxford OX3 9DU UK

Ruth and Bruce Rappaport Faculty of Medicine Technion Israel Institute of Technology Haifa 31096 Israel

St John of Jerusalem Eye Hospital Group East Jerusalem 91198 Palestine

Telethon Institute of Genetics and Medicine 80078 Pozzuoli Italy

The Rotterdam Eye Hospital 3011 BH Rotterdam The Netherlands

The School of Genetics and Microbiology The University of Dublin Trinity College D02 VF25 Dublin Ireland

Unit of Medical Genetics IRCCS Azienda Ospedaliero Universitaria di Bologna 40138 Bologna Italy

Univ Lille Inserm CHU Lille U1172 LilNCog Lille Neuroscience and Cognition F 59000 Lille France

University of Cape Town MRC Precision and Genomic Medicine Research Unit Division of Human Genetics Department of Pathology Institute of Infectious Disease and Molecular Medicine Faculty of Health Sciences University of Cape Town Cape Town 7925 South Africa

Zobrazit více v PubMed

Boon C.J., Klevering B.J., Leroy B.P., Hoyng C.B., Keunen J.E., den Hollander A.I. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog. Retin. Eye Res. 2009;28:187–205. doi: 10.1016/j.preteyeres.2009.04.002. PubMed DOI

Small K.W. North Carolina macular dystrophy, revisited. Ophthalmology. 1989;96:1747–1754. doi: 10.1016/S0161-6420(89)32655-8. PubMed DOI

Lefler W.H., Wadsworth J.A., Sidbury J.B., Jr. Hereditary macular degeneration and amino-aciduria. Am. J. Ophthalmol. 1971;71:224–230. doi: 10.1016/0002-9394(71)90394-1. PubMed DOI

Hamel C.P. Cone rod dystrophies. Orphanet J. Rare Dis. 2007;2:7. doi: 10.1186/1750-1172-2-7. PubMed DOI PMC

Stargardt K. Über familiäre, progressive Degeneration in der Maculagegend des Auges. Albrecht Graefes Arch. Ophthalmol. 1909;71:534–550. doi: 10.1007/BF01961301. DOI

Fishman G.A. Fundus Flavimaculatus: A Clinical Classification. Arch. Ophthalmol. 1976;94:2061–2067. doi: 10.1001/archopht.1976.03910040721003. PubMed DOI

Birtel J., Eisenberger T., Gliem M., Müller P.L., Herrmann P., Betz C., Zahnleiter D., Neuhaus C., Lenzner S., Holz F.G., et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci. Rep. 2018;8:4824. doi: 10.1038/s41598-018-22096-0. PubMed DOI PMC

Boulanger-Scemama E., Mohand-Saïd S., El Shamieh S., Démontant V., Condroyer C., Antonio A., Michiels C., Boyard F., Saraiva J.-P., Letexier M., et al. Phenotype Analysis of Retinal Dystrophies in Light of the Underlying Genetic Defects: Application to Cone and Cone-Rod Dystrophies. Int. J. Mol. Sci. 2019;20:4854. doi: 10.3390/ijms20194854. PubMed DOI PMC

Kersten E., Geerlings M.J., Pauper M., Corominas J., Bakker B., Altay L., Fauser S., de Jong E.K., Hoyng C.B., den Hollander A.I. Genetic screening for macular dystrophies in patients clinically diagnosed with dry age-related macular degeneration. Clin. Genet. 2018;94:569–574. doi: 10.1111/cge.13447. PubMed DOI PMC

Runhart E.H., Sangermano R., Cornelis S.S., Verheij J., Plomp A.S., Boon C.J.F., Lugtenberg D., Roosing S., Bax N.M., Blokland E.A.W., et al. The Common ABCA4 Variant p.Asn1868Ile Shows Nonpenetrance and Variable Expression of Stargardt Disease When Present in trans With Severe Variants. Investig. Ophthalmol. Vis. Sci. 2018;59:3220–3231. doi: 10.1167/iovs.18-23881. PubMed DOI

Cornelis S.S., Bax N.M., Zernant J., Allikmets R., Fritsche L.G., den Dunnen J.T., Ajmal M., Hoyng C.B., Cremers F.P. In Silico Functional Meta-Analysis of 5,962 ABCA4 Variants in 3,928 Retinal Dystrophy Cases. Hum. Mutat. 2017;38:400–408. doi: 10.1002/humu.23165. PubMed DOI

Runhart E.H., Valkenburg D., Cornelis S.S., Khan M., Sangermano R., Albert S., Bax N.M., Astuti G.D.N., Gilissen C., Pott J.R., et al. Late-Onset Stargardt Disease Due to Mild, Deep-Intronic ABCA4 Alleles. Investig. Ophthalmol. Vis. Sci. 2019;60:4249–4256. doi: 10.1167/iovs.19-27524. PubMed DOI

Zernant J., Lee W., Collison F.T., Fishman G.A., Sergeev Y.V., Schuerch K., Sparrow J.R., Tsang S.H., Allikmets R. Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J. Med. Genet. 2017;54:404–412. doi: 10.1136/jmedgenet-2017-104540. PubMed DOI PMC

Boon C.J., Klevering B.J., Cremers F.P., Zonneveld-Vrieling M.N., Theelen T., Den Hollander A.I., Hoyng C.B. Central areolar choroidal dystrophy. Ophthalmology. 2009;116:771–782.e771. doi: 10.1016/j.ophtha.2008.12.019. PubMed DOI

Michaelides M., Holder G.E., Bradshaw K., Hunt D.M., Moore A.T. Cone-rod dystrophy, intrafamilial variability, and incomplete penetrance associated with the R172W mutation in the peripherin/RDS gene. Ophthalmology. 2005;112:1592–1598. doi: 10.1016/j.ophtha.2005.04.004. PubMed DOI

Soucy M., Kolesnikova M., Kim A.H., Tsang S.H. Phenotypic variability in PRPH2 as demonstrated by a family with incomplete penetrance of autosomal dominant cone-rod dystrophy. Doc. Ophthalmol. 2023;146:267–272. doi: 10.1007/s10633-022-09916-5. PubMed DOI

Davidson A.E., Sergouniotis P.I., Mackay D.S., Wright G.A., Waseem N.H., Michaelides M., Holder G.E., Robson A.G., Moore A.T., Plagnol V., et al. RP1L1 variants are associated with a spectrum of inherited retinal diseases including retinitis pigmentosa and occult macular dystrophy. Hum. Mutat. 2013;34:506–514. doi: 10.1002/humu.22264. PubMed DOI

Zobor D., Zobor G., Hipp S., Baumann B., Weisschuh N., Biskup S., Sliesoraityte I., Zrenner E., Kohl S. Phenotype Variations Caused by Mutations in the RP1L1 Gene in a Large Mainly German Cohort. Investig. Ophthalmol. Vis. Sci. 2018;59:3041–3052. doi: 10.1167/iovs.18-24033. PubMed DOI

Akahori M., Tsunoda K., Miyake Y., Fukuda Y., Ishiura H., Tsuji S., Usui T., Hatase T., Nakamura M., Ohde H., et al. Dominant mutations in RP1L1 are responsible for occult macular dystrophy. Am. J. Hum. Genet. 2010;87:424–429. doi: 10.1016/j.ajhg.2010.08.009. PubMed DOI PMC

Fujinami K., Kameya S., Kikuchi S., Ueno S., Kondo M., Hayashi T., Shinoda K., Machida S., Kuniyoshi K., Kawamura Y., et al. Novel RP1L1 Variants and Genotype-Photoreceptor Microstructural Phenotype Associations in Cohort of Japanese Patients With Occult Macular Dystrophy. Investig. Ophthalmol. Vis. Sci. 2016;57:4837–4846. doi: 10.1167/iovs.16-19670. PubMed DOI

Siemiatkowska A.M., Schuurs-Hoeijmakers J.H., Bosch D.G., Boonstra F.N., Riemslag F.C., Ruiter M., de Vries B.B., den Hollander A.I., Collin R.W., Cremers F.P. Nonpenetrance of the most frequent autosomal recessive leber congenital amaurosis mutation in NMNAT1. JAMA Ophthalmol. 2014;132:1002–1004. doi: 10.1001/jamaophthalmol.2014.983. PubMed DOI

Hitti-Malin R.J., Dhaenens C.M., Panneman D.M., Corradi Z., Khan M., den Hollander A.I., Farrar G.J., Gilissen C., Hoischen A., van de Vorst M., et al. Using single molecule Molecular Inversion Probes as a cost-effective, high-throughput sequencing approach to target all genes and loci associated with macular diseases. Hum. Mutat. 2022;43:2234–2250. doi: 10.1002/humu.24489. PubMed DOI PMC

Khan M., Cornelis S.S., Khan M.I., Elmelik D., Manders E., Bakker S., Derks R., Neveling K., van de Vorst M., Gilissen C., et al. Cost-effective molecular inversion probe-based ABCA4 sequencing reveals deep-intronic variants in Stargardt disease. Hum. Mutat. 2019;40:1749–1759. doi: 10.1002/humu.23787. PubMed DOI

Jaganathan K., Kyriazopoulou Panagiotopoulou S., McRae J.F., Darbandi S.F., Knowles D., Li Y.I., Kosmicki J.A., Arbelaez J., Cui W., Schwartz G.B., et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell. 2019;176:535–548.e24. doi: 10.1016/j.cell.2018.12.015. PubMed DOI

Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC

Sangermano R., Khan M., Cornelis S.S., Richelle V., Albert S., Garanto A., Elmelik D., Qamar R., Lugtenberg D., van den Born L.I., et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28:100–110. doi: 10.1101/gr.226621.117. PubMed DOI PMC

Sangermano R., Bax N.M., Bauwens M., van den Born L.I., De Baere E., Garanto A., Collin R.W., Goercharn-Ramlal A.S., den Engelsman-van Dijk A.H., Rohrschneider K., et al. Photoreceptor Progenitor mRNA Analysis Reveals Exon Skipping Resulting from the ABCA4 c.5461-10T→C Mutation in Stargardt Disease. Ophthalmology. 2016;123:1375–1385. doi: 10.1016/j.ophtha.2016.01.053. PubMed DOI

Fadaie Z., Neveling K., Mantere T., Derks R., Haer-Wigman L., den Ouden A., Kwint M., O’Gorman L., Valkenburg D., Hoyng C.B., et al. Long-read technologies identify a hidden inverted duplication in a family with choroideremia. HGG Adv. 2021;2:100046. doi: 10.1016/j.xhgg.2021.100046. PubMed DOI PMC

de Laat P., Smeitink J.A.M., Janssen M.C.H., Keunen J.E.E., Boon C.J.F. Mitochondrial retinal dystrophy associated with the m.3243A>G mutation. Ophthalmology. 2013;120:2684–2696. doi: 10.1016/j.ophtha.2013.05.013. PubMed DOI

Khan M., Cornelis S.S., Pozo-Valero M.D., Whelan L., Runhart E.H., Mishra K., Bults F., AlSwaiti Y., AlTalbishi A., De Baere E., et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet. Med. 2020;22:1235–1246. doi: 10.1038/s41436-020-0787-4. PubMed DOI

Corradi Z., Khan M., Hitti-Malin R., Mishra K., Whelan L., Cornelis S.S., Group A.B.-S., Hoyng C.B., Kampjarvi K., Klaver C.C.W., et al. Targeted sequencing and in vitro splice assays shed light on ABCA4-associated retinopathies missing heritability. HGG Adv. 2023;4:100237. doi: 10.1016/j.xhgg.2023.100237. PubMed DOI PMC

Albert S., Garanto A., Sangermano R., Khan M., Bax N.M., Hoyng C.B., Zernant J., Lee W., Allikmets R., Collin R.W.J., et al. Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease. Am. J. Hum. Genet. 2018;102:517–527. doi: 10.1016/j.ajhg.2018.02.008. PubMed DOI PMC

Braun T.A., Mullins R.F., Wagner A.H., Andorf J.L., Johnston R.M., Bakall B.B., Deluca A.P., Fishman G.A., Lam B.L., Weleber R.G., et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum. Mol. Genet. 2013;22:5136–5145. doi: 10.1093/hmg/ddt367. PubMed DOI PMC

Cornelis S.S., Bauwens M., Haer-Wigman L., De Bruyne M., Pantrangi M., De Baere E., Hufnagel R.B., Dhaenens C.M., Cremers F.P. Compendium of clinical variant classification for 2,247 unique ABCA4 variants to improve genetic medicine access for Stargardt Disease. medRxiv. 2023 doi: 10.1101/2023.04.24.23288782. DOI

Holtan J.P., Aukrust I., Jansson R.W., Berland S., Bruland O., Gjerde B.L., Stokowy T., Bojovic O., Forsaa V., Austeng D., et al. Clinical features and molecular genetics of patients with ABCA4-retinal dystrophies. Acta Ophthalmol. 2021;99:e733–e746. doi: 10.1111/aos.14679. PubMed DOI

Bech-Hansen N.T., Naylor M.J., Maybaum T.A., Pearce W.G., Koop B., Fishman G.A., Mets M., Musarella M.A., Boycott K.M. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. 1998;19:264–267. doi: 10.1038/947. PubMed DOI

Kimchi A., Meiner V., Silverstein S., Macarov M., Mor-Shaked H., Blumenfeld A., Audo I., Zeitz C., Mechoulam H., Banin E., et al. An Ashkenazi Jewish founder mutation in CACNA1F causes retinal phenotype in both hemizygous males and heterozygous female carriers. Ophthalmic Genet. 2019;40:443–448. doi: 10.1080/13816810.2019.1681008. PubMed DOI

Mantyjarvi M., Nurmenniemi P., Partanen J., Myohanen T., Peippo M., Alitalo T. Clinical features and a follow-up study in a family with X-linked progressive cone-rod dystrophy. Acta Ophthalmol. Scand. 2001;79:359–365. doi: 10.1034/j.1600-0420.2001.079004359.x. PubMed DOI

Rattner A., Smallwood P.M., Williams J., Cooke C., Savchenko A., Lyubarsky A., Pugh E.N., Nathans J. A photoreceptor-specific cadherin is essential for the structural integrity of the outer segment and for photoreceptor survival. Neuron. 2001;32:775–786. doi: 10.1016/S0896-6273(01)00531-1. PubMed DOI

Stingl K., Mayer A.K., Llavona P., Mulahasanovic L., Rudolph G., Jacobson S.G., Zrenner E., Kohl S., Wissinger B., Weisschuh N. CDHR1 mutations in retinal dystrophies. Sci. Rep. 2017;7:6992. doi: 10.1038/s41598-017-07117-8. PubMed DOI PMC

Charbel Issa P., Gliem M., Yusuf I.H., Birtel J., Müller P.L., Mangold E., Downes S.M., MacLaren R.E., Betz C., Bolz H.J. A Specific Macula-Predominant Retinal Phenotype Is Associated With the CDHR1 Variant c.783G>A, a Silent Mutation Leading to In-Frame Exon Skipping. Investig. Ophthalmol. Vis. Sci. 2019;60:3388–3397. doi: 10.1167/iovs.18-26415. PubMed DOI

Ba-Abbad R., Robson A.G., Mahroo O.A., Wright G., Schiff E., Duignan E.S., Michaelides M., Arno G., Webster A.R. A clinical study of patients with novel CDHR1 genotypes associated with late-onset macular dystrophy. Eye. 2021;35:1482–1489. doi: 10.1038/s41433-020-1045-3. PubMed DOI PMC

Burkard M., Kohl S., Kratzig T., Tanimoto N., Brennenstuhl C., Bausch A.E., Junger K., Reuter P., Sothilingam V., Beck S.C., et al. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J. Clin. Investig. 2018;128:5663–5675. doi: 10.1172/JCI96098. PubMed DOI PMC

Kohl S., Varsanyi B., Antunes G.A., Baumann B., Hoyng C.B., Jagle H., Rosenberg T., Kellner U., Lorenz B., Salati R., et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet. 2005;13:302–308. doi: 10.1038/sj.ejhg.5201269. PubMed DOI

Lee W., Zernant J., Nagasaki T., Molday L.L., Su P.Y., Fishman G.A., Tsang S.H., Molday R.S., Allikmets R. Cis-acting modifiers in the ABCA4 locus contribute to the penetrance of the major disease-causing variant in Stargardt disease. Hum. Mol. Genet. 2021;30:1293–1304. doi: 10.1093/hmg/ddab122. PubMed DOI PMC

Hamel C.P., Griffoin J.M., Bazalgette C., Lasquellec L., Duval P.A., Bareil C., Beaufrère L., Bonnet S., Eliaou C., Marlhens F., et al. Molecular genetics of pigmentary retinopathies: Identification of mutations in CHM, RDS, RHO, RPE65, USH2A and XLRS1 genes. J. Fr. Ophtalmol. 2000;23:985–995. PubMed

Runhart E.H., Dhooge P., Meester-Smoor M., Pas J., Pott J.W.R., van Leeuwen R., Kroes H.Y., Bergen A.A., de Jong-Hesse Y., Thiadens A.A., et al. Stargardt disease: Monitoring incidence and diagnostic trends in the Netherlands using a nationwide disease registry. Acta Ophthalmol. 2022;100:395–402. doi: 10.1111/aos.14996. PubMed DOI PMC

Poloschek C.M., Bach M., Lagreze W.A., Glaus E., Lemke J.R., Berger W., Neidhardt J. ABCA4 and ROM1: Implications for modification of the PRPH2-associated macular dystrophy phenotype. Investig. Ophthalmol. Vis. Sci. 2010;51:4253–4265. doi: 10.1167/iovs.09-4655. PubMed DOI

Rodriguez-Munoz A., Aller E., Jaijo T., Gonzalez-Garcia E., Cabrera-Peset A., Gallego-Pinazo R., Udaondo P., Salom D., Garcia-Garcia G., Millan J.M. Expanding the Clinical and Molecular Heterogeneity of Nonsyndromic Inherited Retinal Dystrophies. J. Mol. Diagn. 2020;22:532–543. doi: 10.1016/j.jmoldx.2020.01.003. PubMed DOI

Pfau M., Zein W.M., Huryn L.A., Cukras C.A., Jeffrey B.G., Hufnagel R.B., Brooks B.P. Genotype-Phenotype Association in ABCA4-Associated Retinopathy. Adv. Exp. Med. Biol. 2023;1415:289–295. doi: 10.1007/978-3-031-27681-1_42. PubMed DOI PMC

Kim D.J., Woo S.J., Joo K. Phenotypic and Genetic Alterations in Adult-Onset Cone and Cone-Rod Dystrophy. Ophthalmic Res. 2024;67:9–22. doi: 10.1159/000535430. PubMed DOI

Kajiwara K., Berson E.L., Dryja T.P. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science. 1994;264:1604–1608. doi: 10.1126/science.8202715. PubMed DOI

Loewen C.J., Moritz O.L., Molday R.S. Molecular characterization of peripherin-2 and rom-1 mutants responsible for digenic retinitis pigmentosa. J. Biol. Chem. 2001;276:22388–22396. doi: 10.1074/jbc.M011710200. PubMed DOI

Biswas P., Villanueva A.L., Soto-Hermida A., Duncan J.L., Matsui H., Borooah S., Kurmanov B., Richard G., Khan S.Y., Branham K., et al. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet. 2021;17:e1009848. doi: 10.1371/journal.pgen.1009848. PubMed DOI PMC

Boulanger-Scemama E., El Shamieh S., Démontant V., Condroyer C., Antonio A., Michiels C., Boyard F., Saraiva J.P., Letexier M., Souied E., et al. Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: Mutation spectrum and new genotype-phenotype correlation. Orphanet J. Rare Dis. 2015;10:85. doi: 10.1186/s13023-015-0300-3. PubMed DOI PMC

Zernant J., Lee W., Wang J., Goetz K., Ullah E., Nagasaki T., Su P.Y., Fishman G.A., Tsang S.H., Tumminia S.J., et al. Rare and common variants in ROM1 and PRPH2 genes trans-modify Stargardt/ABCA4 disease. PLoS Genet. 2022;18:e1010129. doi: 10.1371/journal.pgen.1010129. PubMed DOI PMC

Ma C.J., Lee W., Stong N., Zernant J., Chang S., Goldstein D., Nagasaki T., Allikmets R. Late-onset pattern macular dystrophy mimicking ABCA4 and PRPH2 disease is caused by a homozygous frameshift mutation in ROM1. Cold Spring Harb. Mol. Case Stud. 2019;5:a003624. doi: 10.1101/mcs.a003624. PubMed DOI PMC

Yahya S., Smith C.E.L., Poulter J.A., McKibbin M., Arno G., Ellingford J., Kämpjärvi K., Khan M.I., Cremers F.P.M., Hardcastle A.J., et al. Late-Onset Autosomal Dominant Macular Degeneration Caused by Deletion of the CRX Gene. Ophthalmology. 2023;130:68–76. doi: 10.1016/j.ophtha.2022.07.023. PubMed DOI

Saksens N.T., Fleckenstein M., Schmitz-Valckenberg S., Holz F.G., den Hollander A.I., Keunen J.E., Boon C.J., Hoyng C.B. Macular dystrophies mimicking age-related macular degeneration. Prog. Retin. Eye Res. 2014;39:23–57. doi: 10.1016/j.preteyeres.2013.11.001. PubMed DOI

Boon C.J., Klevering B.J., Hoyng C.B., Zonneveld-Vrieling M.N., Nabuurs S.B., Blokland E., Cremers F.P., den Hollander A.I. Basal laminar drusen caused by compound heterozygous variants in the CFH gene. Am. J. Hum. Genet. 2008;82:516–523. doi: 10.1016/j.ajhg.2007.11.007. PubMed DOI PMC

Ratnapriya R., Zhan X., Fariss R.N., Branham K.E., Zipprer D., Chakarova C.F., Sergeev Y.V., Campos M.M., Othman M., Friedman J.S., et al. Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Hum. Mol. Genet. 2014;23:5827–5837. doi: 10.1093/hmg/ddu276. PubMed DOI PMC

Chen W., Stambolian D., Edwards A.O., Branham K.E., Othman M., Jakobsdottir J., Tosakulwong N., Pericak-Vance M.A., Campochiaro P.A., Klein M.L., et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc. Natl. Acad. Sci. USA. 2010;107:7401–7406. doi: 10.1073/pnas.0912702107. PubMed DOI PMC

Allikmets R. Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am. J. Hum. Genet. 2000;67:487–491. doi: 10.1086/303018. PubMed DOI PMC

Fritsche L.G., Fleckenstein M., Fiebig B.S., Schmitz-Valckenberg S., Bindewald-Wittich A., Keilhauer C.N., Renner A.B., Mackensen F., Mößner A., Pauleikhoff D., et al. A subgroup of age-related macular degeneration is associated with mono-allelic sequence variants in the ABCA4 gene. Investig. Ophthalmol. Vis. Sci. 2012;53:2112–2118. doi: 10.1167/iovs.11-8785. PubMed DOI

Fisher S.A., Rivera A., Fritsche L.G., Keilhauer C.N., Lichtner P., Meitinger T., Rudolph G., Weber B.H. Case-control genetic association study of fibulin-6 (FBLN6 or HMCN1) variants in age-related macular degeneration (AMD) Hum. Mutat. 2007;28:406–413. doi: 10.1002/humu.20464. PubMed DOI

Schultz D.W., Klein M.L., Humpert A.J., Luzier C.W., Persun V., Schain M., Mahan A., Runckel C., Cassera M., Vittal V., et al. Analysis of the ARMD1 locus: Evidence that a mutation in HEMICENTIN-1 is associated with age-related macular degeneration in a large family. Hum. Mol. Genet. 2003;12:3315–3323. doi: 10.1093/hmg/ddg348. PubMed DOI

Pras E., Kristal D., Shoshany N., Volodarsky D., Vulih I., Celniker G., Isakov O., Shomron N., Pras E. Rare genetic variants in Tunisian Jewish patients suffering from age-related macular degeneration. J. Med. Genet. 2015;52:484–492. doi: 10.1136/jmedgenet-2015-103130. PubMed DOI

Goto Y., Nonaka I., Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348:651–653. doi: 10.1038/348651a0. PubMed DOI

Kobayashi Y., Momoi M.Y., Tominaga K., Momoi T., Nihei K., Yanagisawa M., Kagawa Y., Ohta S. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) Biochem. Biophys. Res. Commun. 1990;173:816–822. doi: 10.1016/S0006-291X(05)80860-5. PubMed DOI

Bonte C.A., Matthijs G.L., Cassiman J.J., Leys A.M. Macular pattern dystrophy in patients with deafness and diabetes. Retina. 1997;17:216–221. doi: 10.1097/00006982-199717030-00008. PubMed DOI

Massin P., Dubois-Laforgue D., Meas T., Laloi-Michelin M., Gin H., Bauduceau B., Bellanné-Chantelot C., Bertin E., Blickle J.F., Bouhanick B., et al. Retinal and renal complications in patients with a mutation of mitochondrial DNA at position 3,243 (maternally inherited diabetes and deafness). A case-control study. Diabetologia. 2008;51:1664–1670. doi: 10.1007/s00125-008-1073-1. PubMed DOI

Tanna P., Strauss R.W., Fujinami K., Michaelides M. Stargardt disease: Clinical features, molecular genetics, animal models and therapeutic options. Br. J. Ophthalmol. 2017;101:25–30. doi: 10.1136/bjophthalmol-2016-308823. PubMed DOI PMC

Cremers F.P.M., Lee W., Collin R.W.J., Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog. Retin. Eye Res. 2020;79:100861. doi: 10.1016/j.preteyeres.2020.100861. PubMed DOI PMC

Cornelis S.S., Runhart E.H., Bauwens M., Corradi Z., De Baere E., Roosing S., Haer-Wigman L., Dhaenens C.M., Vulto-van Silfhout A.T., Cremers F.P.M. Personalized genetic counseling for Stargardt disease: Offspring risk estimates based on variant severity. Am. J. Hum. Genet. 2022;109:498–507. doi: 10.1016/j.ajhg.2022.01.008. PubMed DOI PMC

Riepe T.V., Khan M., Roosing S., Cremers F.P.M., t Hoen P.A.C. Benchmarking deep learning splice prediction tools using functional splice assays. Hum. Mutat. 2021;42:799–810. doi: 10.1002/humu.24212. PubMed DOI PMC

Hanany M., Rivolta C., Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc. Natl. Acad. Sci. USA. 2020;117:2710–2716. doi: 10.1073/pnas.1913179117. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...