The need for widely available genomic testing in rare eye diseases: an ERN-EYE position statement
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33743793
PubMed Central
PMC7980559
DOI
10.1186/s13023-021-01756-x
PII: 10.1186/s13023-021-01756-x
Knihovny.cz E-zdroje
- Klíčová slova
- ERN-EYE, Genetic and genomic testing, Position statement, Rare eye diseases,
- MeSH
- dítě MeSH
- genetické testování MeSH
- genomika MeSH
- lidé MeSH
- oční nemoci * MeSH
- vzácné nemoci * diagnóza genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Rare Eye Diseases (RED) are the leading cause of visual impairment and blindness for children and young adults in Europe. This heterogeneous group of conditions includes over 900 disorders ranging from relatively prevalent disorders such as retinitis pigmentosa to very rare entities such as developmental eye anomalies. A significant number of patients with RED have an underlying genetic etiology. One of the aims of the European Reference Network for Rare Eye Diseases (ERN-EYE) is to facilitate improvement in diagnosis of RED in European member states. MAIN BODY: Technological advances have allowed genetic and genomic testing for RED. The outcome of genetic testing allows better understanding of the condition and allows reproductive and therapeutic options. The increase of the number of clinical trials for RED has provided urgency for genetic testing in RED. A survey of countries participating in ERN-EYE demonstrated that the majority are able to access some forms of genomic testing. However, there is significant variability, particularly regarding testing as part of clinical service. Some countries have a well-delineated rare disease pathway and have a national plan for rare diseases combined or not with a national plan for genomics in medicine. In other countries, there is a well-established organization of genetic centres that offer reimbursed genomic testing of RED and other rare diseases. Clinicians often rely upon research-funded laboratories or private companies. Notably, some member states rely on cross-border testing by way of an academic research project. Consequently, many clinicians are either unable to access testing or are confronted with long turnaround times. Overall, while the cost of sequencing has dropped, the cumulative cost of a genomic testing service for populations remains considerable. Importantly, the majority of countries reported healthcare budgets that limit testing. SHORT CONCLUSION: Despite technological advances, critical gaps in genomic testing remain in Europe, especially in smaller countries where no formal genomic testing pathways exist. Even within larger countries, the existing arrangements are insufficient to meet the demand and to ensure access. ERN-EYE promotes access to genetic testing in RED and emphasizes the clinical need and relevance of genetic testing in RED.
Azienda Ospedaliero Universitaria Careggi Firenze Italy
CARGO Hôpitaux Universitaires de Strasbourg Strasbourg France
Center for Medical Genetics Ghent Ghent University Hospital Ghent Belgium
Centro Hospitalar E Universitário de Coimbra Coimbra Portugal
Children's Clinical University Hospital Riga Latvia
Department of General Ophthalmology Medical University Lublin Poland
Department of Head and Skin Ghent University Ghent Belgium
Department of Human Genetics Radboudumc Nijmegen Netherlands
Department of Ophthalmology General University Hospital Prague Prague Czech Republic
Department of Ophthalmology Ghent University Hospital Ghent Belgium
East Tallinn Central Hospital Tallinn Estonia
ERN EYE Coordination Center Hopitaux Universitaires de Strasbourg Strasbourg France
Hospital of Lithuanian University of Health Science Kauno Klinikos Lithuania
Rigshospitalet Glostrup Denmark
U 1112 Inserm Faculté de Médecine Université de Strasbourg Strasbourg France
Zobrazit více v PubMed
ERN description on European Commission official website [Internet]. Public Health - Eur. Comm. 2016 [cited 2020 Sep 29]. Available from: https://ec.europa.eu/health/ern_en
ERN-EYE official website [Internet]. ERN-EYE. [cited 2020 Sep 29]. Available from: https://www.ern-eye.eu/
Solebo AL, Teoh L, Rahi J. Epidemiology of blindness in children. Arch Dis Child. 2017;102:853–857. doi: 10.1136/archdischild-2016-310532. PubMed DOI
Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open. 2014;4:e004015. doi: 10.1136/bmjopen-2013-004015. PubMed DOI PMC
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–186. doi: 10.1016/j.preteyeres.2018.03.005. PubMed DOI
Sergouniotis PI, Maxime E, Leroux D, Olry A, Thompson R, Rath A, et al. An ontological foundation for ocular phenotypes and rare eye diseases. Orphanet J Rare Dis. 2019;14:8. doi: 10.1186/s13023-018-0980-6. PubMed DOI PMC
Zeggini E, Gloyn AL, Barton AC, Wain LV. Translational genomics and precision medicine: Moving from the lab to the clinic. Science. 2019;365:1409–1413. doi: 10.1126/science.aax4588. PubMed DOI
Lenassi E, Clayton-Smith J, Douzgou S, Ramsden SC, Ingram S, Hall G, et al. Clinical utility of genetic testing in 201 preschool children with inherited eye disorders. Genet Med Off J Am Coll Med Genet. 2020;22:745–751. PubMed PMC
Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME, et al. A brief history of human disease genetics. Nature. 2020;577:179–189. doi: 10.1038/s41586-019-1879-7. PubMed DOI PMC
Lasseaux E, Plaisant C, Michaud V, Pennamen P, Trimouille A, Gaston L, et al. Molecular characterization of a series of 990 index patients with albinism. Pigment Cell Melanoma Res. 2018;31:466–474. doi: 10.1111/pcmr.12688. PubMed DOI
Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101:1147–1154. doi: 10.1136/bjophthalmol-2016-309975. PubMed DOI PMC
Vázquez-Domínguez I, Garanto A, Collin RWJ. Molecular Therapies for Inherited Retinal Diseases-Current Standing, Opportunities and Challenges. Genes. 2019;10. PubMed PMC
Garafalo AV, Cideciyan AV, Héon E, Sheplock R, Pearson A, WeiYang YuC, et al. Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res. 2020;77:100827. doi: 10.1016/j.preteyeres.2019.100827. PubMed DOI PMC
Cideciyan AV, Jacobson SG. Leber Congenital Amaurosis (LCA): Potential for Improvement of Vision. Invest Ophthalmol Vis Sci. 2019;60:1680–1695. doi: 10.1167/iovs.19-26672. PubMed DOI PMC
Research C for BE and. Luxturna description on U.S Food and Drug website [Internet]. FDA. 2019 [cited 2020 Sep 26]. Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/luxturna
Luxturna description on European Medicines Agency website [Internet]. EMA. 2018 [cited 2020 Sep 29]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/luxturna
Guidance for Luxturna on National Institute for Health and Care Excellence website [Internet]. NIH. NICE; [cited 2020 Sep 29]. Available from: https://www.nice.org.uk/guidance/hst11
LUXTURNA on Haute Autorité de Santé website [Internet]. HAS. [cited 2020 Sep 29]. Available from: https://www.has-sante.fr/jcms/c_2964759/fr/luxturna
Duijkers L, van den Born LI, Neidhardt J, Bax NM, Pierrache LHM, Klevering BJ, et al. Antisense Oligonucleotide-Based Splicing Correction in Individuals with Leber Congenital Amaurosis due to Compound Heterozygosity for the c.2991+1655A>G Mutation in CEP290. Int J Mol Sci. 2018;19. PubMed PMC
Cideciyan AV, Jacobson SG, Drack AV, Ho AC, Charng J, Garafalo AV, et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med. 2019;25:225–228. doi: 10.1038/s41591-018-0295-0. PubMed DOI
Ledford H. CRISPR treatment inserted directly into the body for first time. Nature. 2020;579:185. doi: 10.1038/d41586-020-00655-8. PubMed DOI
Bachmann-Gagescu R, Neuhauss SC. The photoreceptor cilium and its diseases. Curr Opin Genet Dev. 2019;56:22–33. doi: 10.1016/j.gde.2019.05.004. PubMed DOI
Ellingford JM, Sergouniotis PI, Lennon R, Bhaskar S, Williams SG, Hillman KA, et al. Pinpointing clinical diagnosis through whole exome sequencing to direct patient care: a case of Senior-Loken syndrome. Lancet Lond Engl. 2015;385:1916. doi: 10.1016/S0140-6736(15)60496-2. PubMed DOI PMC
Aboshiha J, Dubis AM, van der Spuy J, Nishiguchi KM, Cheeseman EW, Ayuso C, et al. Preserved outer retina in AIPL1 Leber’s congenital amaurosis: implications for gene therapy. Ophthalmology. 2015;122:862–864. doi: 10.1016/j.ophtha.2014.11.019. PubMed DOI
Sacristan-Reviriego A, Le HM, Georgiou M, Meunier I, Bocquet B, Roux A-F, et al. Clinical and functional analyses of AIPL1 variants reveal mechanisms of pathogenicity linked to different forms of retinal degeneration. Sci Rep. 2020;10:17520. doi: 10.1038/s41598-020-74516-9. PubMed DOI PMC
Bouzia Z, Georgiou M, Hull S, Robson AG, Fujinami K, Rotsos T, et al. GUCY2D-associated leber congenital amaurosis: a retrospective natural history study in preparation for trials of novel therapies. Am J Ophthalmol. 2020;210:59–70. doi: 10.1016/j.ajo.2019.10.019. PubMed DOI PMC
Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Charng J, Lu M, et al. Defining outcomes for clinical trials of leber congenital amaurosis caused by GUCY2D mutations. Am J Ophthalmol. 2017;177:44–57. doi: 10.1016/j.ajo.2017.02.003. PubMed DOI
Wright GA, Georgiou M, Robson AG, Ali N, Kalhoro A, Holthaus SK, et al. Juvenile batten disease (CLN3): detailed ocular phenotype, novel observations, delayed diagnosis, masquerades, and prospects for therapy. Ophthalmol Retina. 2020;4:433–445. doi: 10.1016/j.oret.2019.11.005. PubMed DOI PMC
Dulz S, Atiskova Y, Wibbeler E, Wildner J, Wagenfeld L, Schwering C, et al. An ophthalmic rating scale to assess ocular involvement in juvenile CLN3 disease. Am J Ophthalmol. 2020;220:64–71. doi: 10.1016/j.ajo.2020.07.015. PubMed DOI
Hirji N, Aboshiha J, Georgiou M, Bainbridge J, Michaelides M. Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genet. 2018;39:149–157. doi: 10.1080/13816810.2017.1418389. PubMed DOI
Cehajic Kapetanovic J, Patrício MI, MacLaren RE. Progress in the development of novel therapies for choroideremia. Expert Rev Ophthalmol. 2019;14:277–285. doi: 10.1080/17469899.2019.1699406. PubMed DOI PMC
De Silva SR, Arno G, Robson AG, Fakin A, Pontikos N, Mohamed MD, et al. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog Retin Eye Res. 2020;100898. PubMed
Rahman N, Georgiou M, Khan KN, Michaelides M. Macular dystrophies: clinical and imaging features, molecular genetics and therapeutic options. Br J Ophthalmol. 2020;104:451–460. doi: 10.1136/bjophthalmol-2019-315086. PubMed DOI PMC
Gill JS, Georgiou M, Kalitzeos A, Moore AT, Michaelides M. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol. 2019; PubMed PMC
Bauwens M, Garanto A, Sangermano R, Naessens S, Weisschuh N, De Zaeytijd J, et al. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genet Med Off J Am Coll Med Genet. 2019;21:1761–1771. PubMed PMC
Sangermano R, Garanto A, Khan M, Runhart EH, Bauwens M, Bax NM, et al. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genet Med Off J Am Coll Med Genet. 2019;21:1751–1760. PubMed PMC
Khan M, Cornelis SS, Pozo-Valero MD, Whelan L, Runhart EH, Mishra K, et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet Med Off J Am Coll Med Genet. 2020;22:1235–1246. PubMed
Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550:345–353. doi: 10.1038/nature24286. PubMed DOI
Boycott KM, Hartley T, Biesecker LG, Gibbs RA, Innes AM, Riess O, et al. A diagnosis for all rare genetic diseases: the horizon and the next frontiers. Cell. 2019;177:32–37. doi: 10.1016/j.cell.2019.02.040. PubMed DOI
Lappalainen T, Scott AJ, Brandt M, Hall IM. Genomic analysis in the age of human genome sequencing. Cell. 2019;177:70–84. doi: 10.1016/j.cell.2019.02.032. PubMed DOI PMC
Inherited retinal Disease Gene Testing Program on Invitae website [Internet]. INVITEAE. [cited 2020 Sep 29]. Available from: https://www.invitae.com/en/sponsored-testing/ophthalmology/
Genetic Testing for Inherited Retinal Diseases through the Foundation’s Open Access Program on Fighting Blindness Foundation website [Internet]. Found. Fight. Blind. [cited 2020 Sep 29]. Available from: https://www.fightingblindness.org/research/genetic-testing-for-inherited-retinal-diseases-through-the-foundation-s-open-access-program-79
Rare diseases description on official French government website [Internet]. DGOS Ministère Solidar. Santé. 2021 [cited 2020 Sep 29]. Available from: https://solidarites-sante.gouv.fr/soins-et-maladies/prises-en-charge-specialisees/maladies-rares/article/les-maladies-rares
Plan France Médecine Génomique 2025 / aviesan [Internet]. [cited 2021 Jan 26]. Available from: https://www.aviesan.fr/aviesan/accueil/toute-l-actualite/plan-france-medecine-genomique-2025
Genomics England website [Internet]. Genomics Engl. [cited 2020 Sep 29]. Available from: https://www.genomicsengland.co.uk/
The Cost of Sequencing a Human Genome on National Human Genome Research Institute website [Internet]. [cited 2020 Sep 29]. Available from: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
Peterson JF, Roden DM, Orlando LA, Ramirez AH, Mensah GA, Williams MS. Building evidence and measuring clinical outcomes for genomic medicine. Lancet Lond Engl. 2019;394:604–610. doi: 10.1016/S0140-6736(19)31278-4. PubMed DOI PMC
Sergouniotis PI. Inherited retinal disorders: using evidence as a driver for implementation. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd. 2019;242:187–194. PubMed
Gillespie RL, Urquhart J, Anderson B, Williams S, Waller S, Ashworth J, et al. Next-generation sequencing in the diagnosis of metabolic disease marked by pediatric cataract. Ophthalmology. 2016;123:217–220. doi: 10.1016/j.ophtha.2015.06.035. PubMed DOI
Gillespie RL, O’Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology. 2014;121:2124–2137.e1–2. PubMed
Taylor RL, Parry NRA, Barton SJ, Campbell C, Delaney CM, Ellingford JM, et al. Panel-based clinical genetic testing in 85 children with inherited retinal disease. Ophthalmology. 2017;124:985–991. doi: 10.1016/j.ophtha.2017.02.005. PubMed DOI
Haer-Wigman L, van Zelst-Stams WA, Pfundt R, van den Born LI, Klaver CC, Verheij JB, et al. Diagnostic exome sequencing in 266 Dutch patients with visual impairment. Eur J Hum Genet EJHG. 2017;25:591–599. doi: 10.1038/ejhg.2017.9. PubMed DOI PMC
Birtel J, Gliem M, Oishi A, Müller PL, Herrmann P, Holz FG, et al. Genetic testing in patients with retinitis pigmentosa: Features of unsolved cases. Clin Experiment Ophthalmol. 2019;47:779–786. doi: 10.1111/ceo.13385. PubMed DOI
Carss KJ, Arno G, Erwood M, Stephens J, Sanchis-Juan A, Hull S, et al. Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am J Hum Genet. 2017;100:75–90. doi: 10.1016/j.ajhg.2016.12.003. PubMed DOI PMC