De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
U01 EY030580
NEI NIH HHS - United States
R01 EY012910
NEI NIH HHS - United States
Wellcome Trust - United Kingdom
P30 EY014104
NEI NIH HHS - United States
R01 EY031663
NEI NIH HHS - United States
UG1 EY033292
NEI NIH HHS - United States
P30 EY002162
NEI NIH HHS - United States
R01 EY030499
NEI NIH HHS - United States
R01 EY018213
NEI NIH HHS - United States
UG1 EY033293
NEI NIH HHS - United States
R01 EY035717
NEI NIH HHS - United States
P30 EY022589
NEI NIH HHS - United States
T32 EY026590
NEI NIH HHS - United States
UG1 EY033286
NEI NIH HHS - United States
R01 EY033770
NEI NIH HHS - United States
R01 EY024698
NEI NIH HHS - United States
P30 EY019007
NEI NIH HHS - United States
R24 EY027285
NEI NIH HHS - United States
K99 EY036930
NEI NIH HHS - United States
R01 EY030591
NEI NIH HHS - United States
R24 EY028758
NEI NIH HHS - United States
PubMed
39830270
PubMed Central
PMC11741465
DOI
10.1101/2025.01.06.24317169
PII: 2025.01.06.24317169
Knihovny.cz E-zdroje
- Klíčová slova
- hereditary disease, non-coding, retinitis pigmentosa, snRNA, spliceosome, splicing,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The U4 small nuclear RNA (snRNA) forms a duplex with the U6 snRNA and, together with U5 and ~30 proteins, is part of the U4/U6.U5 tri-snRNP complex, located at the core of the major spliceosome. Recently, recurrent de novo variants in the U4 RNA, transcribed from the RNU4-2 gene, and in at least two other RNU genes were discovered to cause neurodevelopmental disorder. We detected inherited and de novo heterozygous variants in RNU4-2 (n.18_19insA and n.56T>C) and in four out of the five RNU6 paralogues (n.55_56insG and n.56_57insG) in 135 individuals from 62 families with non-syndromic retinitis pigmentosa (RP), a rare form of hereditary blindness. We show that these variants are recurrent among RP families and invariably cluster in close proximity within the three-way junction (between stem-I, the 5' stem-loop and stem-II) of the U4/U6 duplex, affecting its natural conformation. Interestingly, this region binds to numerous splicing factors of the tri-snRNP complex including PRPF3, PRPF8 and PRPF31, previously associated with RP as well. The U4 and U6 variants identified seem to affect snRNP biogenesis, namely the U4/U6 di-snRNP, which is an assembly intermediate of the tri-snRNP. Based on the number of positive cases observed, deleterious variants in RNU4-2 and in RNU6 paralogues could be a significant cause of isolated or dominant RP, accounting for up to 1.2% of all undiagnosed RP cases. This study highlights the role of non-coding genes in rare Mendelian disorders and uncovers pleiotropy in RNU4-2, where different variants underlie neurodevelopmental disorder and RP.
Bonei Olam Center for Rare Jewish Genetic Diseases Brooklyn NY USA
Center for Biomedical Network Research on Rare Diseases Instituto de Salud Carlos 3 Madrid Spain
Center for Medical Genetics Department of Biomolecular Medicine Ghent Belgium
Center for Rare Disease University of Tübingen Tübingen Germany
Centre for Gene Therapy and Regenerative Medicine King's College London London UK
Centre for Ophthalmology University Eye Hospital University Hospital Tübingen Tübingen Germany
Child Neuropsychiatry IRCCS Mondino Foundation Pavia Italy
Clinical Translation Group Institute of Molecular and Clinical Ophthalmology Basel Basel Switzerland
College of Medical and Dental Sciences University of Birmingham Birmingham UK
Department of Biochemistry Faculty of Medicine UNAM Mexico City Mexico
Department of Clinical Genetics Institute of Clinical Medicine University of Tartu Tartu Estonia
Department of Clinical Pharmacology Medical University of Vienna Vienna Austria
Department of Genetics and Genome Biology University of Leicester Leicester UK
Department of Genetics Institute of Ophthalmology Conde de Valenciana Mexico City Mexico
Department of Head and Skin Ghent University Hospital Ghent Belgium
Department of Histology and Embryology Medical University of Warsaw Warsaw Poland
Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands
Department of Internal Medicine Radboud University Medical Center Nijmegen The Netherlands
Department of Medical Genetics ULS St Maria Lisboa Portugal
Department of Medicine and Surgery Medical Genetics University of Parma Parma Italy
Department of Molecular Medicine University of Pavia Pavia Italy
Department of Neuroscience Biodonostia Health Research Institute Donostia San Sebastián Spain
Department of Ophthalmology Amsterdam University Medical Center Amsterdam The Netherlands
Department of Ophthalmology and Human Genetics University of Michigan Ann Arbor MI USA
Department of Ophthalmology Columbia University Irving Medical Center New York NY USA
Department of Ophthalmology Erasmus University Rotterdam Rotterdam The Netherlands
Department of Ophthalmology Federal University of São Paulo UNIFESP São Paulo SP Brazil
Department of Ophthalmology Ghent University Hospital Ghent Belgium
Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
Department of Ophthalmology Medical University of Warsaw Warsaw Poland
Department of Ophthalmology Nagoya University Graduate School of Medicine Nagoya Japan
Department of Ophthalmology NYU Grossman School of Medicine New York NY USA
Department of Ophthalmology Oslo University Hospital Oslo Norway
Department of Ophthalmology Pediatric ophthalmology and Ophthalmogenetics Leuven Belgium
Department of Ophthalmology Radboud University Medical Center Nijmegen The Netherlands
Department of Ophthalmology Rambam Health Care Campus Haifa Israel
Department of Ophthalmology Rothschild Foundation Hospital Paris France
Department of Ophthalmology School of Medicine University of Crete Heraklion Crete Greece
Department of Ophthalmology School of Medicine University of Ioannina Ioannina Greece
Department of Ophthalmology Semmelweis University Budapest Hungary
Department of Ophthalmology Shiley Eye Institute University of California San Diego La Jolla CA USA
Department of Ophthalmology The Jikei University School of Medicine Minato ku Tokyo Japan
Department of Ophthalmology University Hospital of Lund Lund Sweden
Department of Ophthalmology University of Basel Basel Switzerland
Department of Ophthalmology University of the Basque Country San Sebastián Spain
Department of Physiology Development and Neuroscience University of Cambridge Cambridge UK
European Vision Institute Basel Switzerland
Eye Clinic Tartu University Hospital Tartu Estonia
Eye Disease Clinic Children's University Hospital Riga Riga Latvia
Genetics and Personalized Medicine Clinic Tartu University Hospital Tartu Estonia
Genomic Medicine Telethon Institute of Genetics and Medicine Pozzuoli NA Italy
Genomics England Ltd London UK
INSERM U1298 Montpellier University Institute for Neurosciences of Montpellier Montpellier France
Institute for Neurosciences of Montpellier Montpellier University Inserm Montpellier France
Instituto de Investigación Sanitaria La Fe and CIBERER Valencia Spain
JC Self Research Institute Greenwood Genetic Center Greenwood SC USA
Laboratory of Basic Immunology Faculdade de Medicina Universidade de Lisboa Lisboa Portugal
Medical Genetics and Prenatal Diagnostics Clinic Children's Clinical University Hospital Riga Latvia
Molecular Biology Research Unit St John Eye Hospital Group Jerusalem Palestine
National Institute of Health Research Biomedical Research Centre Moorfields Eye Hospital London UK
Neurogenetics Research Center IRCCS Mondino Foundation Pavia Italy
Ocular Genomics institute Massachusetts Eye and Ear Harvard Medical School Boston MA USA
Ocular Genomics Institute Massachusetts Eye and Ear Harvard Medical School Boston MA USA
Ophthalmic Genetics Group Institute of Molecular and Clinical Ophthalmology Basel Basel Switzerland
Ophthalmology department HUB Erasme Hospital Brussels Belgium
Oxford Eye Hospital Oxford University Hospitals NHS Foundation Trust Oxford UK
Pallas Kliniken AG Pallas Klinik Zürich Zürich Switzerland
Physicians Dialysis Miami FL USA
Rappaport Faculty of Medicine Technion Israel Institute of Technology Haifa Israel
Retina Foundation of the Southwest Dallas TX USA
Section of Ophthalmology King's College London St Thomas' Hospital Campus London UK
Serviço de Oftalmologia Instituto de Oftalmologia Dr Gama Pinto Lisboa Portugal
SPKSO Ophthalmic University Hospital in Warsaw Warsaw Poland
The Rotterdam Eye Hospital Rotterdam Ophthalmic Institute Rotterdam The Netherlands
UCL Institute of Ophthalmology University College London London UK
Université de Lille INSERM U1172 LilNCog Lille Neuroscience and Cognition Lille France
Vista Vision Eye Clinic Brescia Italy
Vitreous Retina Macula Consultants of New York New York NY USA
Zobrazit více v PubMed
Verbakel S. K. et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 66, 157–186 (2018). 10.1016/j.preteyeres.2018.03.005 PubMed DOI
Peter V. G. et al. The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis. PNAS Nexus 2, pgad043 (2023). 10.1093/pnasnexus/pgad043 PubMed DOI PMC
Perea-Romero I. et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci Rep 11, 1526 (2021). 10.1038/s41598-021-81093-y PubMed DOI PMC
Conti G. M. et al. Genetics of Retinitis Pigmentosa and Other Hereditary Retinal Disorders in Western Switzerland. Ophthalmic Res 67, 172–182 (2024). 10.1159/000536036 PubMed DOI
Hanany M., Rivolta C. & Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci U S A 117, 2710–2716 (2020). 10.1073/pnas.1913179117 PubMed DOI PMC
Karczewski K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). 10.1038/s41586-020-2308-7 PubMed DOI PMC
Fu X. D. Non-coding RNA: a new frontier in regulatory biology. Natl Sci Rev 1, 190–204 (2014). 10.1093/nsr/nwu008 PubMed DOI PMC
Chen Y. et al. De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome. Nature 632, 832–840 (2024). 10.1038/s41586-024-07773-7 PubMed DOI PMC
Greene D. et al. Mutations in the U4 snRNA gene RNU4-2 cause one of the most prevalent monogenic neurodevelopmental disorders. Nat Med 30, 2165–2169 (2024). 10.1038/s41591-024-03085-5 PubMed DOI PMC
Jackson A., Thaker N., Blakes A. & Banka S. Analysis of R-loop forming regions identifies RNU2-2P and RNU5B-1 as neurodevelopmental disorder genes. medRxiv, 2024.2010.2004.24314692 (2024). 10.1101/2024.10.04.24314692 DOI
Nava C. et al. Dominant variants in major spliceosome U4 and U5 small nuclear RNA genes cause neurodevelopmental disorders through splicing disruption. medRxiv, 2024.2010.2007.24314689 (2024). 10.1101/2024.10.07.24314689 DOI
Greene D. et al. Mutations in the U2 snRNA gene RNU2-2P cause a severe neurodevelopmental disorder with prominent epilepsy. medRxiv, 2024.2009.2003.24312863 (2024). 10.1101/2024.09.03.24312863 DOI
Weisschuh N. et al. Genetic architecture of inherited retinal degeneration in Germany: A large cohort study from a single diagnostic center over a 9-year period. Hum Mutat 41, 1514–1527 (2020). 10.1002/humu.24064 PubMed DOI
Mozaffari-Jovin S. et al. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev 26, 2422–2434 (2012). 10.1101/gad.200949.112 PubMed DOI PMC
Liu S. et al. Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Science 316, 115–120 (2007). 10.1126/science.1137924 PubMed DOI
Chen S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2024). 10.1038/s41586-023-06045-0 PubMed DOI PMC
Sudlow C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015). 10.1371/journal.pmed.1001779 PubMed DOI PMC
Denny J. C. et al. The “All of Us” Research Program. N Engl J Med 381, 668–676 (2019). 10.1056/NEJMsr1809937 PubMed DOI PMC
Caulfield M. National Genomic Research Library (2017). 10.6084/m9.figshare.4530893.v7 DOI
Daiger S. P., Bowne S. J. & Sullivan L. S. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa. Cold Spring Harb Perspect Med 5 (2014). 10.1101/cshperspect.a017129 PubMed DOI PMC
Sullivan L. S. et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci 47, 3052–3064 (2006). 10.1167/iovs.05-1443 PubMed DOI PMC
Hardin J. W., Warnasooriya C., Kondo Y., Nagai K. & Rueda D. Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET. Nucleic Acids Res 43, 10963–10974 (2015). 10.1093/nar/gkv1011 PubMed DOI PMC
Landrum M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42, D980–985 (2014). 10.1093/nar/gkt1113 PubMed DOI PMC
Zhong Z. et al. Two novel mutations in PRPF3 causing autosomal dominant retinitis pigmentosa. Sci Rep 6, 37840 (2016). 10.1038/srep37840 PubMed DOI PMC
Denison R. A., Van Arsdell S. W., Bernstein L. B. & Weiner A. M. Abundant pseudogenes for small nuclear RNAs are dispersed in the human genome. Proc Natl Acad Sci U S A 78, 810–814 (1981). 10.1073/pnas.78.2.810 PubMed DOI PMC
Tanackovic G. et al. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet 20, 2116–2130 (2011). 10.1093/hmg/ddr094 PubMed DOI PMC
D’Haene E. et al. Comparative 3D genome analysis between neural retina and retinal pigment epithelium reveals differential cis-regulatory interactions at retinal disease loci. Genome Biol 25, 123 (2024). 10.1186/s13059-024-03250-6 PubMed DOI PMC
Prasetyo N. K. & Gardner P. P. Assessing the robustness of human ncRNA notation at HGNC. bioRxiv, 2024.2012.2008.627405 (2024). 10.1101/2024.12.08.627405 DOI
Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis 1, 40 (2006). 10.1186/1750-1172-1-40 PubMed DOI PMC
Grover S. et al. Visual acuity impairment in patients with retinitis pigmentosa at age 45 years or older. Ophthalmology 106, 1780–1785 (1999). 10.1016/s0161-6420(99)90342-1 PubMed DOI
Bodenbender J. P. et al. Clinical and Genetic Findings in a Cohort of Patients with PRPF31-Associated Retinal Dystrophy. Am J Ophthalmol 267, 213–229 (2024). 10.1016/j.ajo.2024.06.020 PubMed DOI
Waseem N. H. et al. Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 48, 1330–1334 (2007). 10.1167/iovs.06-0963 PubMed DOI
Maubaret C. G. et al. Autosomal dominant retinitis pigmentosa with intrafamilial variability and incomplete penetrance in two families carrying mutations in PRPF8. Invest Ophthalmol Vis Sci 52, 9304–9309 (2011). 10.1167/iovs.11-8372 PubMed DOI
Yusuf I. H. et al. Clinical Characterization of Retinitis Pigmentosa Associated With Variants in SNRNP200. JAMA Ophthalmol 137, 1295–1300 (2019). 10.1001/jamaophthalmol.2019.3298 PubMed DOI PMC
Buskin A. et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat Commun 9, 4234 (2018). 10.1038/s41467-018-06448-y PubMed DOI PMC
Azizzadeh Pormehr L., Ahmadian S., Daftarian N., Mousavi S. A. & Shafiezadeh M. PRPF31 reduction causes mis-splicing of the phototransduction genes in human organotypic retinal culture. Eur J Hum Genet 28, 491–498 (2020). 10.1038/s41431-019-0531-1 PubMed DOI PMC
Veltman J. A. & Brunner H. G. De novo mutations in human genetic disease. Nat Rev Genet 13, 565–575 (2012). 10.1038/nrg3241 PubMed DOI
Petersen-Jones S. M. et al. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach. J Clin Invest 128, 190–206 (2018). 10.1172/jci95161 PubMed DOI PMC
Lee W. et al. Cis-acting modifiers in the ABCA4 locus contribute to the penetrance of the major disease-causing variant in Stargardt disease. Hum Mol Genet 30, 1293–1304 (2021). 10.1093/hmg/ddab122 PubMed DOI PMC
Robson A. G. et al. ISCEV Standard for full-field clinical electroretinography (2022 update). Doc Ophthalmol 144, 165–177 (2022). 10.1007/s10633-022-09872-0 PubMed DOI PMC
Li H. & Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). 10.1093/bioinformatics/btp324 PubMed DOI PMC
DePristo M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43, 491–498 (2011). 10.1038/ng.806 PubMed DOI PMC
Wang K., Li M. & Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010). 10.1093/nar/gkq603 PubMed DOI PMC
Yeo G. & Burge C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11, 377–394 (2004). 10.1089/1066527041410418 PubMed DOI
Jaganathan K. et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 176, 535–548.e524 (2019). 10.1016/j.cell.2018.12.015 PubMed DOI
Freeman P. J., Hart R. K., Gretton L. J., Brookes A. J. & Dalgleish R. VariantValidator: Accurate validation, mapping, and formatting of sequence variation descriptions. Hum Mutat 39, 61–68 (2018). 10.1002/humu.23348 PubMed DOI PMC
Richards S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17, 405–424 (2015). 10.1038/gim.2015.30 PubMed DOI PMC
Ellard S. et al. ACGS best practice guidelines for variant classification 2019. Assoc. Clin. Genet. Sci, 1–32 (2019).
Gruber A. R., Lorenz R., Bernhart S. H., Neuböck R. & Hofacker I. L. The Vienna RNA websuite. Nucleic Acids Res 36, W70–74 (2008). 10.1093/nar/gkn188 PubMed DOI PMC
Johnson P. Z. & Simon A. E. RNAcanvas: interactive drawing and exploration of nucleic acid structures. Nucleic Acids Res 51, W501–w508 (2023). 10.1093/nar/gkad302 PubMed DOI PMC
McHarg S. et al. Mast cell infiltration of the choroid and protease release are early events in age-related macular degeneration associated with genetic risk at both chromosomes 1q32 and 10q26. Proc Natl Acad Sci U S A 119, e2118510119 (2022). 10.1073/pnas.2118510119 PubMed DOI PMC
Langmead B. & Salzberg S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012). 10.1038/nmeth.1923 PubMed DOI PMC
Li H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). 10.1093/bioinformatics/btp352 PubMed DOI PMC
Wang J. et al. ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nat Commun 9, 1364 (2018). 10.1038/s41467-018-03856-y PubMed DOI PMC
Cherry T. J. et al. Mapping the cis-regulatory architecture of the human retina reveals noncoding genetic variation in disease. Proc Natl Acad Sci U S A 117, 9001–9012 (2020). 10.1073/pnas.1922501117 PubMed DOI PMC
Van de Sompele S. et al. Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy. Am J Hum Genet 109, 2029–2048 (2022). 10.1016/j.ajhg.2022.09.013 PubMed DOI PMC
Roithová A. et al. The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. Nucleic Acids Res 46, 3774–3790 (2018). 10.1093/nar/gky070 PubMed DOI PMC