Non-Penetrance for Ocular Phenotype in Two Individuals Carrying Heterozygous Loss-of-Function ZEB1 Alleles
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
Grantová podpora
MR/S031820/1
Medical Research Council - United Kingdom
PubMed
33946386
PubMed Central
PMC8146820
DOI
10.3390/genes12050677
PII: genes12050677
Knihovny.cz E-zdroje
- Klíčová slova
- ZEB1, cornea, loss-of-function, penetrance,
- MeSH
- dědičné dystrofie rohovky genetika patologie MeSH
- haploinsuficience MeSH
- heterozygot MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace ztráty funkce * MeSH
- penetrance * MeSH
- rodokmen MeSH
- transkripční faktor Zeb1 genetika metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transkripční faktor Zeb1 MeSH
- ZEB1 protein, human MeSH Prohlížeč
ZEB1 loss-of-function (LoF) alleles are known to cause a rare autosomal dominant disorder-posterior polymorphous corneal dystrophy type 3 (PPCD3). To date, 50 pathogenic LoF variants have been identified as disease-causing and familial studies have indicated that the PPCD3 phenotype is penetrant in approximately 95% of carriers. In this study, we interrogated in-house exomes (n = 3616) and genomes (n = 88) for the presence of putative heterozygous LoF variants in ZEB1. Next, we performed detailed phenotyping in a father and his son who carried a novel LoF c.1279C>T; p.(Glu427*) variant in ZEB1 (NM_030751.6) absent from the gnomAD v.2.1.1 dataset. Ocular examination of the two subjects did not show any abnormalities characteristic of PPCD3. GnomAD (n = 141,456 subjects) was also interrogated for LoF ZEB1 variants, notably 8 distinct heterozygous changes presumed to lead to ZEB1 haploinsufficiency, not reported to be associated with PPCD3, have been identified. The NM_030751.6 transcript has a pLI score ≥ 0.99, indicating extreme intolerance to haploinsufficiency. In conclusion, ZEB1 LoF variants are present in a general population at an extremely low frequency. As PPCD3 can be asymptomatic, the true penetrance of ZEB1 LoF variants remains currently unknown but is likely to be lower than estimated by the familial led approaches adopted to date.
Zobrazit více v PubMed
Krachmer J.H. Posterior polymorphous corneal dystrophy: A disease characterized by epithelial-like endothelial cells which influence management and prognosis. Trans. Am. Ophthalmol. Soc. 1985;83:413–475. PubMed PMC
Liskova P., Palos M., Hardcastle A.J., Vincent A.L. Further genetic and clinical insights of posterior polymorphous corneal dystrophy 3. JAMA Ophthalmol. 2013;131:1296–1303. doi: 10.1001/jamaophthalmol.2013.405. PubMed DOI
Liskova P., Dudakova L., Evans C.J., Rojas Lopez K.E., Pontikos N., Athanasiou D., Jama H., Sach J., Skalicka P., Stranecky V., et al. Ectopic GRHL2 Expression Due to Non-coding Mutations Promotes Cell State Transition and Causes Posterior Polymorphous Corneal Dystrophy 4. Am. J. Hum. Genet. 2018;102:447–459. doi: 10.1016/j.ajhg.2018.02.002. PubMed DOI PMC
Cieply B., Farris J., Denvir J., Ford H.L., Frisch S.M. Epithelial-mesenchymal transition and tumor suppression are controlled by a reciprocal feedback loop between ZEB1 and Grainyhead-like-2. Cancer Res. 2013;73:6299–6309. doi: 10.1158/0008-5472.CAN-12-4082. PubMed DOI PMC
Hong T., Watanabe K., Ta C.H., Villarreal-Ponce A., Nie Q., Dai X. An Ovol2-Zeb1 Mutual Inhibitory Circuit Governs Bidirectional and Multi-step Transition between Epithelial and Mesenchymal States. PLoS Comput. Biol. 2015;11:e1004569. doi: 10.1371/journal.pcbi.1004569. PubMed DOI PMC
Plygawko A.T., Kan S., Campbell K. Epithelial-mesenchymal plasticity: Emerging parallels between tissue morphogenesis and cancer metastasis. Philos. Trans. R Soc. Lond. B Biol. Sci. 2020;375:20200087. doi: 10.1098/rstb.2020.0087. PubMed DOI PMC
Davidson A.E., Liskova P., Evans C.J., Dudakova L., Noskova L., Pontikos N., Hartmanova H., Hodanova K., Stranecky V., Kozmik Z., et al. Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2. Am. J. Hum. Genet. 2016;98:75–89. doi: 10.1016/j.ajhg.2015.11.018. PubMed DOI PMC
Krafchak C.M., Pawar H., Moroi S.E., Sugar A., Lichter P.R., Mackey D.A., Mian S., Nairus T., Elner V., Schteingart M.T., et al. Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. Am. J. Hum. Genet. 2005;77:694–708. doi: 10.1086/497348. PubMed DOI PMC
Dudakova L., Evans C.J., Pontikos N., Hafford-Tear N.J., Malinka F., Skalicka P., Horinek A., Munier F.L., Voide N., Studeny P., et al. The utility of massively parallel sequencing for posterior polymorphous corneal dystrophy type 3 molecular diagnosis. Exp. Eye Res. 2019;182:160–166. doi: 10.1016/j.exer.2019.03.002. PubMed DOI
Cunnusamy K., Bowman C.B., Beebe W., Gong X., Hogan R.N., Mootha V.V. Congenital Corneal Endothelial Dystrophies Resulting from Novel De Novo Mutations. Cornea. 2016;35:281–285. doi: 10.1097/ICO.0000000000000670. PubMed DOI PMC
Liskova P., Evans C.J., Davidson A.E., Zaliova M., Dudakova L., Trkova M., Stranecky V., Carnt N., Plagnol V., Vincent A.V., et al. Heterozygous deletions at the ZEB1 locus verify haploinsufficiency as the mechanism of disease for posterior polymorphous corneal dystrophy type 3. Eur. J. Hum. Genet. 2016;24:985–991. doi: 10.1038/ejhg.2015.232. PubMed DOI PMC
Liskova P., Filipec M., Merjava S., Jirsova K., Tuft S.J. Variable ocular phenotypes of posterior polymorphous corneal dystrophy caused by mutations in the ZEB1 gene. Ophthalmic Genet. 2010;31:230–234. doi: 10.3109/13816810.2010.518577. PubMed DOI
Jang M.S., Roldan A.N., Frausto R.F., Aldave A.J. Posterior polymorphous corneal dystrophy 3 is associated with agenesis and hypoplasia of the corpus callosum. Vis. Res. 2014;100:88–92. doi: 10.1016/j.visres.2014.04.007. PubMed DOI PMC
Chaudhry A., Chung B.H., Stavropoulos D.J., Araya M.P., Ali A., Heon E., Chitayat D. Agenesis of the corpus callosum, developmental delay, autism spectrum disorder, facial dysmorphism, and posterior polymorphous corneal dystrophy associated with ZEB1 gene deletion. Am. J. Med. Genet. A. 2017;173:2467–2471. doi: 10.1002/ajmg.a.38321. PubMed DOI
Collins R.L., Brand H., Karczewski K.J., Zhao X., Alfoldi J., Francioli L.C., Khera A.V., Lowther C., Gauthier L.D., Wang H., et al. A structural variation reference for medical and population genetics. Nature. 2020;581:444–451. doi: 10.1038/s41586-020-2287-8. PubMed DOI PMC
Galgauskas S., Norvydaite D., Krasauskaite D., Stech S., Asoklis R.S. Age-related changes in corneal thickness and endothelial characteristics. Clin. Interv. Aging. 2013;8:1445–1450. doi: 10.2147/CIA.S51693. PubMed DOI PMC
Zoega G.M., Fujisawa A., Sasaki H., Kubota A., Sasaki K., Kitagawa K., Jonasson F. Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology. 2006;113:565–569. doi: 10.1016/j.ophtha.2005.12.014. PubMed DOI
Higa A., Sakai H., Sawaguchi S., Iwase A., Tomidokoro A., Amano S., Araie M. Prevalence of and risk factors for cornea guttata in a population-based study in a southwestern island of Japan: The Kumejima study. Arch. Ophthalmol. 2011;129:332–336. doi: 10.1001/archophthalmol.2010.372. PubMed DOI
Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC
Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alfoldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC
Evans C.J., Liskova P., Dudakova L., Hrabcikova P., Horinek A., Jirsova K., Filipec M., Hardcastle A.J., Davidson A.E., Tuft S.J. Identification of six novel mutations in ZEB1 and description of the associated phenotypes in patients with posterior polymorphous corneal dystrophy 3. Ann. Hum. Genet. 2015;79:1–9. doi: 10.1111/ahg.12090. PubMed DOI
Qin L., Wang J., Tian X., Yu H., Truong C., Mitchell J.J., Wierenga K.J., Craigen W.J., Zhang V.W., Wong L.C. Detection and Quantification of Mosaic Mutations in Disease Genes by Next-Generation Sequencing. J. Mol. Diagn. 2016;18:446–453. doi: 10.1016/j.jmoldx.2016.01.002. PubMed DOI
Palmer E.E., Mowat D. Agenesis of the corpus callosum: A clinical approach to diagnosis. Am. J. Med. Genet. C Semin. Med. Genet. 2014;166C:184–197. doi: 10.1002/ajmg.c.31405. PubMed DOI
Liskova P., Tuft S.J., Gwilliam R., Ebenezer N.D., Jirsova K., Prescott Q., Martincova R., Pretorius M., Sinclair N., Boase D.L., et al. Novel mutations in the ZEB1 gene identified in Czech and British patients with posterior polymorphous corneal dystrophy. Hum. Mutat. 2007;28:638. doi: 10.1002/humu.9495. PubMed DOI PMC
Ziegler A., Colin E., Goudenège D., Bonneau D. A spanshot of some pLI score pitfalls. Hum. Mutat. 2019;40:839–841. PubMed