• This record comes from PubMed

Investigation of arsenic removal from aqueous solution through selective sorption and nanofiber-based filters

. 2021 Dec ; 19 (2) : 1347-1360. [epub] 20210621

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

BACKGROUND: This research paper focuses on removing of arsenic from contaminated water via a nanofibrous polymeric microfiltration membrane, applied in prospective combination with an inorganic sorbent based on iron oxide hydroxide FeO(OH). MATERIALS AND METHODS: Nanofibrous materials were prepared by electrospinning from polyurethane selected by an adsorption test. The chemical composition (FTIR), morphology (SEM, porometry) and hydrophilicity (contact angle) of the prepared nanostructured material were characterized. The process of eliminating arsenic from the contaminated water was monitored by atomic absorption spectroscopy (AAS). The adsorption efficiency of the nanofibrous material and the combination with FeO(OH) was determined, the level of arsenic anchorage on the adsorption filter was assessed by a rinsing test and the selectivity of adsorption in arsenic contaminated mineral water was examined. RESULTS: It was confirmed that the hydrophilic aromatic polyurethane of ester type PU918 is capable of capturing arsenic by complexation on nitrogen in its polymer chains. The maximum As removal efficiency was around 62 %. Arsenic was tightly anchored to the polymeric adsorbent. The adsorption process was sufficiently selective. Furthermore, it was found that the addition of even a small amount of FeO(OH) (0.5 g) to the nanofiber filter would increase the efficiency of As removal by 30 %. CONCLUSIONS: The presented results showed that an adsorption filter based on a polyurethane nanostructured membrane added with an inorganic adsorbent FeO(OH) is a suitable way for the elimination of arsenic from water. However, it is necessary to ensure perfect contact between the surface of the nanostructure and the filtered medium.

See more in PubMed

Kim MJ, Nriagu J. Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ. 2000 doi: 10.1016/S0048-9697(99)00470-2. PubMed DOI

Lackovi JA, Nikolaidis NP, Dobbs G. Inorganic arsenic removal by zero-valent iron. Environ Eng Sci. 2000 doi: 10.1089/ees.2000.17.29. DOI

Arsenic, metals, fibres, and dusts. In: IARC monographs on the evaluation of carcinogenic risks to humans volume 100 C. Lyon; 2009. ISBN 978-92-832-0135-9. PubMed PMC

Ferguson JF, Gavis J. A review of arsenic cycle in natural waters. Water Res. 1972 doi: 10.1016/0043-1354(72)90052-8. DOI

Patterson JW, Arsenic . Industrial wastewater treatment technology. 2. Boston: Butterworth Publishers; 1985. pp. 11–22.

Edwards M. Chemistry of arsenic: Removal during coagulation and Fe-Mn oxidation. J Am Water Works Assoc. 1994 doi: 10.1002/j.1551-8833.1994.tb06247.x. DOI

Matschullat J. Arsenic in the geosphere - a review. Sci Total Environ. 2000 doi: 10.1016/S0048-9697(99)00524-0. PubMed DOI

Hu H. Exposure to metals, Primary care. 2000; 10.1016/S0095-4543(05)70185-8. PubMed

Basu A, Mahata J, Gupta S, Giri AK. Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res. 2001 doi: 10.1016/S1383-5742(01)00056-4. PubMed DOI

Nicomel NR, Leus K, Folens K, Van Der Voort P, Du Laing G. Technologies for arsenic removal from water: current status and future perspectives. Int J Environ Res Public Health. 2016 doi: 10.3390/ijerph13010062. PubMed DOI PMC

Jain C, Ali I, Arsenic Occurrence, toxicity and speciation techniques. Water Res. 2000 doi: 10.1016/S0043-1354(00)00182-2. DOI

Gebel TW. Genotoxicity of arsenical compounds. Int J Hyg Environ Health. 2001 doi: 10.1078/S1438-4639(04)70036-X. PubMed DOI

Singh R, Singh S, Parihar P, Singh VP, Prasad SM. Arsenic contamination consequences and remediation techniques: A review. Ecotoxicol Environ Saf. 2015 doi: 10.1016/j.ecoenv.2014.10.009. PubMed DOI

World Health Organization. Arsenic in drinking-water. In: Background document for development of WHO guidelines for drinking-water quality, 24 p., 2011. Ref. no. WHO/SDE/WSH/03.04/75/rev1. https://www.who.int/water_sanitation_health/publications/arsenic/en/. Accessed 16 Sep 2019.

Vyhláška 252/2004 Sb., kterou se stanoví hygienické požadavky na pitnou a teplou vodu a četnost a rozsah kontroly pitné vody; 27 Apr 2018. https://www.zakonyprolidi.cz/cs/2004-252. Accessed 16 Sep 2019.

Směrnice Rady EU. č. 98/83/ES o jakosti vody určené k lidské spotřebě; 3 Nov 1998 https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1998L0083:20031120:CS:PDF. Accessed 16 Sep 2019.

Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W. Arsenic contamination of ground water and drinking water in Vietnam: a human health threat. Environ Sci Technol. 2001 doi: 10.1021/es010027y. PubMed DOI

Ryu J, Gao S, Dahlgren RA, Zierenberg RA. Arsenic distribution, speciation and solubility in shallow ground water of Owens Dry Lake, California. Geochim Cosmochim Acta. 2002 doi: 10.1016/S0016-7037(02)00897-9. DOI

Anawar HM, Akai J, Mostofa KMG, Safiullah S, Tareq SM. Arsenic poisoning in groundwater: health risk and geochemical sources in Bangladesh. Environ Int. 2002 doi: 10.1016/S0160-4120(01)00116-7. PubMed DOI

Mandal BK, Chowdhury TR, Samata G, Mukherjee DP, Chanda CR, Saha KC, Chankraborti D. Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Sci Total Environ. 1998 doi: 10.1016/S0048-9697(98)00220-4. PubMed DOI

Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002 doi: 10.1016/S0883-2927(02)00018-5. DOI

Smedley PL, Zhang M, Zhang G, Luo Z. Mobilisation of arsenic and other trace elements in fluvia lacustrine aquifers of the Huh hot Basin, Inner Mongolia. Appl Geochem. 2003 doi: 10.1016/S0883-2927(03)00062-3. DOI

Harisha RS, Hosamani KM, Keri RS, Nataraj SK, Aminabhavi TM. Arsenic removal from drinking water using thin film composite nanofiltration membrane. Desalination. 2010 doi: 10.1016/j.desal.2009.10.022. DOI

US Environmental Protection Agency. National primary drinking water regulations, Washington DC, USA, 2018. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 16 Sep 2019.

Han B, Runnells T, Zimbron J, Wickramasinghe R. Arsenic removal from drinking water microfiltration by flocculation and microfiltration. Desalination. 2002 doi: 10.1016/S0011-9164(02)00425-3. DOI

Shih M. An overview of arsenic removal by pressure-driven membrane processes. Desalination. 2005 doi: 10.1016/j.desal.2004.07.031. DOI

Van der Bruggen B, Vandecasteele C, Gestel T, Doyen W, Leysen R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog. 2003 doi: 10.1002/ep.670220116. DOI

Skala M. Odstranění zvýšeného množství arsenu v pitné vodě obce Vepřová a Malá Losenice. https://www.soutezprovodu.cz/ProVodu/files/bd/bd7437b1-18c6-4c50-8588-75b84bdb4811.pdf. Accessed 16 Sep 2019.

Tang S, Lo I. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013 doi: 10.1016/j.watres.2013.02.039. PubMed DOI

Yao S, Liu Z, Shi Z. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. J Environ Health Sci Eng. 2014 doi: 10.1186/2052-336X-12-58. PubMed DOI PMC

Biela R, Kučera T, Vosáhlo J. Odstraňování arsenu z vody sorpčními materiály. In: TBZ info. 2012. https://voda.tzb-info.cz/vlastnosti-a-zdroje-vody/8360-odstranovani-arsenu-z-vody-sorpcnimi-materialy. Accessed 16 Sep 2019.

Katsoyiannis IA, Zouboulis AI. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res. 2002 doi: 10.1016/S0043-1354(02)00236-1. PubMed DOI

Foudazi R, Zowada R, Malakia A. Arsenic removal from water by porous polymers. WRRI Technical Completion Report No. 2016;374:36 p.

Thirunavukkarasu OS, Viraraghavan T, Subramanian KS. Arsenic removal from drinking water using iron oxide-coated sand. Water Air Soil Pollut. 2003 doi: 10.1023/A:1022073721853. DOI

Nguyen CM, Bang S, Cho J, Kyoung-Woong K. Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination. 2009 doi: 10.1016/j.desal.2008.04.047. DOI

Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E. Influence of operating parameters on the arsenic removal by nanofiltration. Water Res. 2010 doi: 10.1016/j.watres.2009.09.007. PubMed DOI

Waypa J, Elimelech M, Hering J. Arsenic removal by RO and NF membranes. J Am Water Works Assoc. 1997 doi: 10.1002/j.1551-8833.1997.tb08309.x. DOI

Sato Y, Kang M, Kamei T, Magara Y. Performance of nanofiltration for arsenic removal. Water Res. 2002 doi: 10.1016/S0043-1354(02)00037-4. PubMed DOI

Uddin M, Mozumder M, Figoli A, Islam M, Drioli E. Arsenic removal by conventional and membrane technology: An overview. Indian J Chem Technol. 2007;14:441–50.

Brandhuber P, Amy G. Alternative methods for membrane filtration of arsenic from drinking water. Desalination. 1998 doi: 10.1016/S0011-9164(98)00061-7. DOI

Rezaee R, Nasseri S, Mahvi AH, Nabizadeh R, Mousavi SA, Rashidi A, Nazmara S. Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water. J Environ Health Sci Eng. 2015 doi: 10.1186/s40201-015-0217-8. PubMed DOI PMC

Kimmer D, Slobodian P, Petras D, Zatloukal M, Olejnik R, Saha P. Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J Appl Polym Sci. 2009 doi: 10.1002/app.29238. DOI

Kimmer D, Vincent I, Lovecká L, Kazda T, Giurg A, Skorvan O. Some aspects of application nanostructured materials in air filtration, water filtration and electrical engineering. In proceedings n Novel Trends in Rheology VII, AIP Conference Proceedings 2010; 10.1063/1.4983003.

Složení. In: Ida (minerální voda). Wikipedie – otevřená encyklopedie. 2011. https://cs.wikipedia.org/wiki/Ida_(miner%C3%A1ln%C3%AD_voda)/. Accessed 16 Sep 2019.

Raul PK, Devi RR, Umlong IM, Thakur AJ, Banerjee S, Veer V. Iron oxide hydroxide nano flower assisted removal of arsenic from water. Mater Res Bull. 2014 doi: 10.1016/j.materresbull.2013.09.015. DOI

Verma P, Agarwal A, Singh VK. Arsenic removal from water through adsorption-a review. Recent Res Sci Technol. 2014;6:219–26.

Ilavský J, Barloková D. Nové sorpčné materiály BAYOXIDE E33, GEH, CFH12 v úprave vody. In: Sborník conference Pitná voda 2008. s. 195–200. W&ET Team, Č. Budějovice 2008; ISBN 978-80-254-2034-8.

Mahmud HNME, Huq AKO, Yahya R. Polymer-based adsorbent for heavy metals removal from aqueous solution. IOP Conf Ser: Mater Sci Eng. 2017 doi: 10.1088/1757-899X/206/1/012100. DOI

Qiu H, Lv L, Pan B, Zhang Q, Zhang W, Zhang Q. Critical review in adsorption kinetic models. J Zhejiang Univ Sci. 2009 doi: 10.1631/jzus.A0820524. DOI

Hussein FB, Abu-Zahra NH. Adsorption kinetics and evaluation study of iron oxide nanoparticles impregnated in polyurethane matrix for water filtration application. J Miner Mater Char Eng. 2017 doi: 10.4236/jmmce.2017.55025. DOI

Günay A, Arslankaya E, Tosun I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J Hazard Mater. 2007 doi: 10.1016/j.jhazmat.2006.12.034. PubMed DOI

Radfard M, Yunesian M, Nabizadeh R, Biglari H, Nazmara S, Hadi M, Yousefi N, Yousefi M, Abbasnia A, Mahvi AH. Drinking water quality and arsenic health risk assessment in Sistan and Baluchestan, Southeastern Province, Iran, Hum. ecol. risk assess. 2019; 10.1080/10807039.2018.1458210.

Arsenic Removal. In: GEH 102. 2012. https://www.lenntech.com/Data-sheets/GEH_102_Arsenic_en-L.pdf. Accessed 16 Sep 2019.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...