Insights into déjà vu: Associations between the frequency of experience and amplitudes of low-frequency oscillations in resting-state functional magnetic resonance imaging
Jazyk angličtina Země Francie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34907615
DOI
10.1111/ejn.15570
Knihovny.cz E-zdroje
- Klíčová slova
- ALFF, default mode network, déjà vu, fALFF, resting-state fMRI,
- MeSH
- emoce MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mapování mozku metody MeSH
- mozek diagnostické zobrazování MeSH
- mozkové vlny * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The phenomenon of déjà vu (DV) has intrigued scientists for decades, yet its neurophysiological underpinnings remain elusive. Brain regions have been identified in which morphometry differs between healthy individuals according to the frequency of their DV experiences. This study built upon these findings by assessing if and how neural activity in these and other brain regions also differ with respect to DV experience. Resting-state fMRI was performed on 68 healthy volunteers, 44 of whom reported DV experiences (DV group) and 24 who did not (NDV group). Using multivariate analyses, we then assessed the (fractional) amplitude of low-frequency fluctuations (fALFF/ALFF), a metric that is believed to index brain tissue excitability, for five discrete frequency bands within sets of brain regions implicated in DV and those comprising the default mode network (DMN). Analyses revealed significantly lower values of fALFF/ALFF for specific frequency bands in the DV relative to the NDV group, particularly within mesiotemporal structures, bilateral putamina, right caudatum, bilateral superior frontal cortices, left lateral parietal cortex, dorsal and ventral medial prefrontal cortex, and the posterior cingulate cortex. The pattern of differences in fALFF/ALFF measures between the brains of individuals who have experienced DV and those who have not provides new neurophysiological insights into this phenomenon, including the potential role of the DMN. We suggest that the erroneous feeling of familiarity arises from a temporary disruption of cortico-subcortical circuitry together with the upregulation of cortical excitability.
Central European Institute of Technology Faculty of Medicine Masaryk University Brno Czech Republic
School of Psychology College of Health and Life Sciences Aston University Birmingham UK
Zobrazit více v PubMed
Achim, A. M., & Lepage, M. (2005). Dorsolateral prefrontal cortex involvement in memory post-retrieval monitoring revealed in both item and associative recognition tests. NeuroImage, 24, 1113-1121. https://doi.org/10.1016/j.neuroimage.2004.10.036
Adachi, N., Adachi, T., Kimura, M., Akanuma, N., Takekawa, Y., & Kato, M. (2003). Demographic and psychological features of Déjà vu experiences in a nonclinical Japanese population. The Journal of Nervous and Mental Disease, 191, 242-247. https://doi.org/10.1097/01.NMD.0000061149.26296.DC
Aiello, M., Salvatore, E., Cachia, A., Pappatà, S., Cavaliere, C., Prinster, A., Nicolai, E., Salvatore, M., Baron, J.-C., & Quarantelli, M. (2015). Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: A PET/MR hybrid scanner study. NeuroImage, 113, 111-121. https://doi.org/10.1016/j.neuroimage.2015.03.017
Anderson, J. S. (2008). Origin of synchronized low-frequency blood oxygen level-dependent fluctuations in the primary visual cortex. AJNR. American Journal of Neuroradiology, 29, 1722-1729. https://doi.org/10.3174/ajnr.A1220
Bancaud, J., Brunet-Bourgin, F., Chauvel, P., & Halgren, E. (1994). Anatomical origin of déjà vu and vivid “memories” in human temporal lobe epilepsy. Brain: A Journal of Neurology, 117(Pt 1), 71-90. https://doi.org/10.1093/brain/117.1.71
Bartolomei, F., Barbeau, E., Gavaret, M., Guye, M., McGonigal, A., Regis, J., & Chauvel, P. (2004). Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology, 63, 858-864. https://doi.org/10.1212/01.WNL.0000137037.56916.3F
Bartolomei, F., Barbeau, E. J., Nguyen, T., McGonigal, A., Régis, J., Chauvel, P., & Wendling, F. (2012). Rhinal-hippocampal interactions during déjà vu. Clinical Neurophysiology, 123, 489-495. https://doi.org/10.1016/j.clinph.2011.08.012
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537-541. https://doi.org/10.1002/mrm.1910340409
Brázdil, M., Mareček, R., Urbánek, T., Kašpárek, T., Mikl, M., Rektor, I., & Zeman, A. (2012). Unveiling the mystery of déjà vu: The structural anatomy of déjà vu. Cortex, 48, 1240-1243. https://doi.org/10.1016/j.cortex.2012.03.004
Brázdil, M., & Zeman, A. (2013). The boundaries of epilepsy: Where is the limit? A reply to Labate and Gambardella. Cortex, 49, 1163-1164. https://doi.org/10.1016/j.cortex.2012.09.015
Brown, A. S. (2004). The deja vu experience. Psychology Press. https://doi.org/10.4324/9780203485446
Brown, A. S., & Marsh, E. J. (2009). Creating illusions of past encounter through brief exposure. Psychological Science, 20, 534-538. https://doi.org/10.1111/j.1467-9280.2009.02337.x
Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926-1929. https://doi.org/10.1126/science.1099745
Chao, S.-H., Liao, Y.-T., Chen, V. C.-H., Li, C.-J., McIntyre, R. S., Lee, Y., & Weng, J.-C. (2018). Correlation between brain circuit segregation and obesity. Behavioural Brain Research, 337, 218-227. https://doi.org/10.1016/j.bbr.2017.09.017
Chen, Y.-C., Xia, W., Luo, B., Muthaiah, V. P. K., Xiong, Z., Zhang, J., Wang, J., Salvi, R., & Teng, G.-J. (2015). Frequency-specific alternations in the amplitude of low-frequency fluctuations in chronic tinnitus. Front. Neural Circuits, 9, 67. https://doi.org/10.3389/fncir.2015.00067
Cleary, A. M., Brown, A. S., Sawyer, B. D., Nomi, J. S., Ajoku, A. C., & Ryals, A. J. (2012). Familiarity from the configuration of objects in 3-dimensional space and its relation to déjà vu: A virtual reality investigation. Consciousness and Cognition, 21, 969-975. https://doi.org/10.1016/j.concog.2011.12.010
Cleary, A. M., & Reyes, N. L. (2009). Scene recognition without identification. Acta Psychol. (Amst.), 131, 53-62. https://doi.org/10.1016/j.actpsy.2009.02.006
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385-396. https://doi.org/10.2307/2136404
Di, X., Kim, E. H., Huang, C.-C., Tsai, S.-J., Lin, C.-P., & Biswal, B. B. (2013). The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity. Frontiers in Human Neuroscience, 7, 118. https://doi.org/10.3389/fnhum.2013.00118
Dobbins, I. G., Rice, H. J., Wagner, A. D., & Schacter, D. L. (2003). Memory orientation and success: Separable neurocognitive components underlying episodic recognition. Neuropsychologia, Functional Neuroimaging of Memory, 41, 318-333. https://doi.org/10.1016/S0028-3932(02)00164-1
Egorova, N., Veldsman, M., Cumming, T., & Brodtmann, A. (2017). Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression. NeuroImage Clin., 16, 116-124. https://doi.org/10.1016/j.nicl.2017.07.014
Evans, A. C. (2013). Networks of anatomical covariance. NeuroImage, 80, 489-504. https://doi.org/10.1016/j.neuroimage.2013.05.054
Fransson, P. (2006). How default is the default mode of brain function?: Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44, 2836-2845. https://doi.org/10.1016/j.neuropsychologia.2006.06.017
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. (2013). The minimal preprocessing pipelines for the human connectome project. NeuroImage, 80, 105-124. https://doi.org/10.1016/j.neuroimage.2013.04.127
Halgren, E., Walter, R. D., Cherlow, D. G., & Crandall, P. H. (1978). Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain: A Journal of Neurology, 101, 83-117. https://doi.org/10.1093/brain/101.1.83
Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., He, Y., & Jia, J. (2011). Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: A resting-state fMRI study. NeuroImage, 55, 287-295. https://doi.org/10.1016/j.neuroimage.2010.11.059
Hoptman, M. J., Zuo, X.-N., Butler, P. D., Javitt, D. C., D'Angelo, D., Mauro, C. J., & Milham, M. P. (2010). Amplitude of low-frequency oscillations in schizophrenia: A resting state fMRI study. Schizophrenia Research, 117, 13-20. https://doi.org/10.1016/j.schres.2009.09.030
Hu, X.-F., Zhang, J.-Q., Jiang, X.-M., Zhou, C.-Y., Wei, L.-Q., Yin, X.-T., Li, J., Zhang, Y.-L., & Wang, J. (2015). Amplitude of low-frequency oscillations in Parkinson's disease: A 2-year longitudinal resting-state functional magnetic resonance imaging study. Chinese Medical Journal, 128, 593-601. https://doi.org/10.4103/0366-6999.151652
Illman, N. A., Butler, C. R., Souchay, C., & Moulin, C. J. A. (2012). Déjà experiences in temporal lobe epilepsy. Epilepsy Res. Treat., 2012, 1-15. https://doi.org/10.1155/2012/539567
Kalcher, K., Boubela, R. N., Huf, W., Bartova, L., Kronnerwetter, C., Derntl, B., Pezawas, L., Filzmoser, P., Nasel, C., & Moser, E. (2014). The spectral diversity of resting-state fluctuations in the human brain. PLOS ONE, 9, e93375. https://doi.org/10.1371/journal.pone.0093375
Kovacs, N., Auer, T., Balas, I., Karadi, K., Zambo, K., Schwarcz, A., Klivenyi, P., Jokeit, H., Horvath, K., Nagy, F., & Janszky, J. (2009). Neuroimaging and cognitive changes during déjà vu. Epilepsy & Behavior, 14, 190-196. https://doi.org/10.1016/j.yebeh.2008.08.017
Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial least squares (PLS) methods for neuroimaging: A tutorial and review. NeuroImage, Multivariate Decoding and Brain Reading, 56, 455-475. https://doi.org/10.1016/j.neuroimage.2010.07.034
Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9. Journal of General Internal Medicine, 16, 606-613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x
Labate, A., Cerasa, A., Mumoli, L., Ferlazzo, E., Aguglia, U., Quattrone, A., & Gambardella, A. (2015). Neuro-anatomical differences among epileptic and non-epileptic déjà-vu. Cortex, 64, 1-7. https://doi.org/10.1016/j.cortex.2014.09.020
Liao, W., Zhang, Z., Mantini, D., Xu, Q., Wang, Z., Chen, G., Jiao, Q., Zang, Y.-F., & Lu, G. (2013). Relationship between large-scale functional and structural covariance networks in idiopathic generalized epilepsy. Brain Connectivity, 3, 240-254. https://doi.org/10.1089/brain.2012.0132
Lin, P., Yang, Y., Gao, J., De Pisapia, N., Ge, S., Wang, X., Zuo, C. S., Jonathan Levitt, J., & Niu, C. (2017). Dynamic default mode network across different brain states. Scientific Reports, 7, 1-13. https://doi.org/10.1038/srep46088
Liu, X., Wang, S., Zhang, X., Wang, Z., Tian, X., & He, Y. (2014). Abnormal amplitude of low-frequency fluctuations of intrinsic brain activity in Alzheimer's disease. Journal of Alzheimer's Disease, 40, 387-397. https://doi.org/10.3233/JAD-131322
Lowe, M. J., Mock, B. J., & Sorenson, J. A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. NeuroImage, 7, 119-132. https://doi.org/10.1006/nimg.1997.0315
McGill, M. L., Devinsky, O., Wang, X., Quinn, B. T., Pardoe, H., Carlson, C., Butler, T., Kuzniecky, R., & Thesen, T. (2014). Functional neuroimaging abnormalities in idiopathic generalized epilepsy. NeuroImage Clin., 6, 455-462. https://doi.org/10.1016/j.nicl.2014.10.008
McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: Applications and advances. NeuroImage, Mathematics in Brain Imaging, 23, S250-S263. https://doi.org/10.1016/j.neuroimage.2004.07.020
Metcalfe, J., & Schwartz, B. L. (2016). The ghost in the machine: Self-reflective consciousness and the neuroscience of metacognition. In The Oxford handbook of metamemory (pp. 407-424). Oxford Library of Psychology. Oxford University Press.
Navarro-Cebrian, A., Knight, R. T., & Kayser, A. S. (2016). Frontal monitoring and parietal evidence: Mechanisms of error correction. Journal of Cognitive Neuroscience, 28, 1166-1177. https://doi.org/10.1162/jocn_a_00962
Nigro, S., Cavalli, S. M., Cerasa, A., Riccelli, R., Fortunato, F., Bianco, M. G., Martino, I., Chiriaco, C., Vaccaro, M. G., Quattrone, A., Gambardella, A., & Labate, A. (2019). Functional activity changes in memory and emotional systems of healthy subjects with déjà vu. Epilepsy & Behavior, 97, 8-14. https://doi.org/10.1016/j.yebeh.2019.05.018
O'Connor, A. R., Barnier, A. J., & Cox, R. E. (2008). Deja vu in the laboratory: A behavioral and experiential comparison of posthypnotic amnesia and posthypnotic familiarity. The International Journal of Clinical and Experimental Hypnosis, 56, 425-450. https://doi.org/10.1080/00207140802255450
Parsons, N., Bowden, S. C., Vogrin, S., & D'Souza, W. J. (2020). Default mode network dysfunction in idiopathic generalised epilepsy. Epilepsy Research, 159, 106254. https://doi.org/10.1016/j.eplepsyres.2019.106254
Penttonen, M., & Buzsáki, G. (2003). Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems, 2, 145-152. https://doi.org/10.1017/S1472928803000074
Peslova, E., Marecek, R., Shaw, D. J., Kasparek, T., Pail, M., & Brazdil, M. (2018). Hippocampal involvement in nonpathological deja vu: Subfield vulnerability rather than temporal lobe epilepsy equivalent. Brain and Behavior: A Cognitive Neuroscience Perspective, 8, e00996. https://doi.org/10.1002/brb3.996
Richardson, T. F., & Winokur, G. (1967). Déjà vu in psychiatric and neurosurgical patients. Archives of General Psychiatry, 17, 622-625. https://doi.org/10.1001/archpsyc.1967.01730290110014
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443-447. https://doi.org/10.1126/science.1100301
Roediger, H., & McDermott, K. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21, 803-814. https://doi.org/10.1037/0278-7393.21.4.803
Schacter, D. L., & Slotnick, S. D. (2004). The cognitive neuroscience of memory distortion. Neuron, 44, 149-160. https://doi.org/10.1016/j.neuron.2004.08.017
Shaw, D. J., Mareček, R., & Brázdil, M. (2015). Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu. Brain Imaging and Behavior, 10, 1068-1079. https://doi.org/10.1007/s11682-015-9471-8
Smith, S. M., Andersson, J., Auerbach, E. J., Beckmann, C. F., Bijsterbosch, J., Douaud, G., Duff, E., Feinberg, D. A., Griffanti, L., Harms, M. P., Kelly, M., Laumann, T., Miller, K. L., Moeller, S., Petersen, S., Power, J., Salimi-Khorshidi, G., Snyder, A. Z., Vu, A., … Glasser, M. F. (2013). Resting-state fMRI in the human connectome project. NeuroImage, 80, 144-168. https://doi.org/10.1016/j.neuroimage.2013.05.039
Sno, H. N., Schalken, H. F., de Jonghe, F., & Koeter, M. W. (1994). The inventory for déjà vu experiences assessment. Development, utility, reliability, and validity. The Journal of Nervous and Mental Disease, 182, 27-33. https://doi.org/10.1097/00005053-199401000-00006
Spitzer, R. L., Kroenke, K., Williams, J. B. W., & Löwe, B. (2006). A brief measure for assessing generalized anxiety disorder: The GAD-7. Archives of Internal Medicine, 166, 1092-1097. https://doi.org/10.1001/archinte.166.10.1092
Urquhart, J., Sivakumaran, M., Macfarlane, J., & O'Connor, A. (2018). fMRI evidence supporting the role of memory conflict in the déjà vu experience. Memory, 29, 1-12. https://doi.org/10.1080/09658211.2018.1524496
Vanhatalo, S., Palva, J. M., Holmes, M. D., Miller, J. W., Voipio, J., & Kaila, K. (2004). Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proceedings of the National Academy of Sciences of the United States of America, 101, 5053-5057. https://doi.org/10.1073/pnas.0305375101
Wang, Z., Zhang, Z., Liao, W., Xu, Q., Zhang, J., Lu, W., Jiao, Q., Chen, G., Feng, J., & Lu, G. (2014). Frequency-dependent amplitude alterations of resting-state spontaneous fluctuations in idiopathic generalized epilepsy. Epilepsy Research, 108, 853-860. https://doi.org/10.1016/j.eplepsyres.2014.03.003
Wang, L., Kong, Q., Li, K., Su, Y., Zeng, Y., Zhang, Q., Dai, W., Xia, M., Wang, G., Jin, Z., Yu, X., & Si, T. (2016). Frequency-dependent changes in amplitude of low-frequency oscillations in depression: A resting-state fMRI study. Neuroscience Letters, 614, 105-111. https://doi.org/10.1016/j.neulet.2016.01.012
Warren-Gash, C., & Zeman, A. (2014). Is there anything distinctive about epileptic deja vu? Journal of Neurology, Neurosurgery, and Psychiatry, 85, 143-147. https://doi.org/10.1136/jnnp-2012-303520
Wen, M., Yang, Z., Wei, Y., Huang, H., Zheng, R., Wang, W., Gao, X., Zhang, M., Fang, K., Zhang, Y., Cheng, J., & Han, S. (2021). More than just statics: Temporal dynamic changes of intrinsic brain activity in cigarette smoking. Addiction Biology, 26, e13050. https://doi.org/10.1111/adb.13050
Yang, H., Long, X.-Y., Yang, Y., Yan, H., Zhu, C.-Z., Zhou, X.-P., Zang, Y.-F., & Gong, Q.-Y. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. NeuroImage, 36, 144-152. https://doi.org/10.1016/j.neuroimage.2007.01.054
Yang, L., Yan, Y., Li, Y., Hu, X., Lu, J., Chan, P., Yan, T., & Han, Y. (2019). Frequency-dependent changes in fractional amplitude of low-frequency oscillations in Alzheimer's disease: A resting-state fMRI study. Brain Imaging and Behavior, 14, 2187-2201. https://doi.org/10.1007/s11682-019-00169-6
Zang, Y.-F., He, Y., Chao-Zhe, Z., Qing-Jiu, C., Liang, S., & Meng, L. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29, 83-91. https://doi.org/10.1016/j.braindev.2006.07.002
Zhang, J., Meng, L., Qin, W., Liu, N., Shi, F.-D., & Yu, C. (2014). Structural damage and functional reorganization in Ipsilesional M1 in well-recovered patients with subcortical stroke. Stroke, 45, 788-793. https://doi.org/10.1161/STROKEAHA.113.003425
Zhang, Z., Lu, G., Zhong, Y., Tan, Q., Chen, H., Liao, W., Tian, L., Li, Z., Shi, J., & Liu, Y. (2010). fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Human Brain Mapping, 31, 1851-1861. https://doi.org/10.1002/hbm.20982
Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J., Wang, Y.-F., & Zang, Y.-F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172, 137-141. https://doi.org/10.1016/j.jneumeth.2008.04.012
Zuo, X.-N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., Castellanos, F. X., Biswal, B. B., & Milham, M. P. (2010). The oscillating brain: Complex and reliable. NeuroImage, 49, 1432-1445. https://doi.org/10.1016/j.neuroimage.2009.09.037