Cholesterol and glucose profiles according to different fasting C-peptide levels: a cross-sectional analysis in a healthy cohort from the Czech Republic
Jazyk angličtina Země Polsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34907741
DOI
10.32725/jab.2021.023
Knihovny.cz E-zdroje
- Klíčová slova
- Atherogenic index, C-peptide, Cholesterol, HDL, LDL, Lipoprotein,
- MeSH
- C-peptid * krev MeSH
- cholesterol * krev MeSH
- diabetes mellitus 2. typu * metabolismus MeSH
- glukosa MeSH
- HDL-cholesterol MeSH
- krevní glukóza * chemie MeSH
- lidé MeSH
- lipoproteiny MeSH
- omezení příjmu potravy MeSH
- průřezové studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- C-peptid * MeSH
- cholesterol * MeSH
- glukosa MeSH
- HDL-cholesterol MeSH
- krevní glukóza * MeSH
- lipoproteiny MeSH
The relationship between glycaemia and lipoprotein metabolism has not been completely clarified, and slight differences may be found between local authors, trials and evaluated parameters. Therefore this cross-sectional study investigated fasting cholesterol and glucose levels along with the determination of atherogenic index in a cohort of healthy individuals from the Czech Republic in relation to their fasting C-peptide levels. Data were collected between 2009 and 2018 and a total of 3189 individuals were stratified by C-peptide reference range (260-1730 pmol/l) into three groups - below (n = 111), within (n = 2952) and above (n = 126). Total, HDL, LDL cholesterol and atherogenic index were used to compare lipoprotein levels by relevant C-peptide concentrations. Participants using the supplements to affect lipid or glycaemia metabolism were excluded from this study. The evaluation of blood parameters in a fasting state included correlations between C-peptide and cholesterols, differences of variances (F-test) and the comparison of lipoprotein mean values (t-test) between the groups created by the C-peptide reference range. Mean values of total (4.9, 5.1, 5.3 mmol/l), LDL (2.6, 3.1, 3.4 mmol/l) cholesterol and atherogenic index (2.1, 2.8, 3.7) were higher with increasing C-peptide levels, whereas HDL was inversely associated with fasting C-peptide concentration. A positive and negative correlation between atherogenic index (rxy = 0.36) and HDL level (rxy = -0.36) with C-peptide values was found. Differences of HDL, LDL and atherogenic index were, in particular, recorded between the groups below and above the reference range of C-peptide (p ≤ 0.001). Considerable differences (p ≤ 0.001) were also observed for the same lipoprotein characteristics between the groups above and within the C-peptide reference. Generally, the type of cholesterol is crucial for the evaluation of specific changes concerning the C-peptide range. Lipoprotein concentrations differ in relation to C-peptide - not only below and above the physiological range, but also inside and outside of it. Conclusions: Fasting levels of cholesterol, plasma glucose, and atherogenic index were strongly associated with fasting C-peptide levels in healthy individuals. Our data suggest that fasting C-peptide could serve as a biomarker for the early detection of metabolic syndrome and/or insulin resistance prior to the manifestation of type 2 diabetes.
Clinic for Metabolic Assessment of prof MUDr Karel Martinik DrSc s r o Hradec Kralove Czech Republic
Hospital of Ceske Budejovice a s Cardiovascular and Thoracic Center Ceske Budejovice Czech Republic
Hospital of Ceske Budejovice a s Central Laboratories Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Andrade RLM, Gigante DP, de Oliveira IO, Horta BL (2018). C-Peptide and cardiovascular risk factors among young adults in a southern Brazilian Cohort. BMC Endocr Disord 18: 80. DOI: 10.1186/s12902-018-0308-5. PubMed DOI
Bo S, Gentile L, Castiglione A, Prandi V, Canil S, Ghigo E, Giccone G (2012). C-peptide and the risk for incident complications and mortality in type 2 diabetic patients: a retrospective cohort study after a 14-year follow-up. Eur J Endocrinol 167(2): 173-180. DOI: 10.1530/EJE-12-0085. PubMed DOI
Díaz-Ruiz M, Martínez-Triguero ML, López-Ruiz A, Fernández-de la Cruz F, Bañuls C, Hernández-Mijares A (2019). Metabolic disorders and inflammation are associated with familial combined hyperlipemia. Clin Chim Acta 490: 194-199. DOI: 10.1016/j.cca.2018.09.009. PubMed DOI
Friedecký B, Kratochvíla J, Springer D, Prázný M, Pelikánová T, Zima T, Racek J (2016). Diabetes mellitus - laboratorní diagnostika a sledování stavu pacientů [Diabetes mellitus - laboratory diagnosis and monitoring of patients]. Klin Biochem Metab 24: 32-47.
Garcia-Webb P, Bonser AM, Whiting D, Masarei JRL (1983). Insulin resistance a risk factor for coronary heart disease? Scan J Clin Lab Invest 43(8): 677-685. DOI: 10.1080/00365518309168849. DOI
Ghorbani A, Shafiee-Nick R (2015). Pathological consequences of C-peptide deficiency in insulin-dependent diabetes mellitus. World J Diabetes 6(1): 145-150. DOI:10.4239/wjd.v6.i1.145. PubMed DOI
Harnishsingh B, Rama B (2018). Is C-peptide a predictor of severity of coronary artery disease in metabolic syndrome? An observational study. Indian Heart J 70(Suppl. 3): S105-S109. DOI: 10.1016/j.ihj.2018.07.005. PubMed DOI
Hirai FE, Moss SE, Klein BE, Klein R (2008). Relationship of glycemic control, exogenous insulin and C-peptide levels to ischemic heart disease mortality over a 16-year period in people with older-onset diabetes. Diabetes Care 31(3): 493-497. DOI: 10.2337/dc07-1161. PubMed DOI
Horáková D, Štěpánek L, Janout V, Janoutová J, Pastucha D, Kollárová H, et al. (2019). Optimal homeostasis model assessment of insulin resistance (HOMA-IR) cut off in Czech population. Medicina (Kaunas) 55(5): 158. DOI: 10.3390/medicina55050158. PubMed DOI
Jones AG, Hattersley AT (2013). The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med 30(7): 803-817. DOI: 10.1111/dme.12159. PubMed DOI
Karen I, Svačina Š, et al. (2014). Diabetes mellitus v primární péči [Diabetes mellitus in primary care], 2nd ed. Prague: Axonite.
Khan HA, Sobki SH, Ekhzaimy A, Khan I, Almusawi MA (2018). Biomarker potential of C-peptide for screening of insulin resistance in diabetic and non-diabetic individuals. Saudi J Biol Sci 25(8): 1729-1732. DOI: 10.1016/j.sjbs.2018.05.027. PubMed DOI
Kulkarni CM, Patil S (2016). Urinary C-peptide and urine C-peptide/creatinine ratio (UCPCR) are possible predictors of endogenous insulin secretion in T2DM subjects - a randomized study. Int J Pharm Bio Sci 7: 443-446. DOI: 10.22376/ijpbs.2016.7.4.b443-446. DOI
Leighton E, Sainsbury CA, Jones GC (2017). A Practical review of C-Peptide testing in diabetes. Diabetes Ther 8(3): 475-487. DOI: 10.1007/s13300-017-0265-4. PubMed DOI
Li Y, Li Y, Meng L, Zheng L (2015). Association between serum C-peptide as a risk factor for cardiovascular disease and high-density lipoprotein cholesterol levels in nondiabetic individuals. PLoS One 10(1): e112281. DOI: 10.1371/journal.pone.0112281. PubMed DOI
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7): 412-419. DOI: 10.1007/BF00280883. PubMed DOI
Methodology of C-peptide, glucose, total, HDL and LDL cholesterol (2020). Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové. [online] [cit. 2020-07-15]. Available at: http://ukbd.fnhk.cz/seznam-metod.html
Min J-Y, Min K-B (2013). Serum C-peptide levels and risk of death among adults without diabetes mellitus. Can Med Assoc J 185(9): E402-408. DOI: 10.1503/cmaj.121950. PubMed DOI
Patel N, Taveira TH, Choudhary G, Whitlatch H, Wu W-C (2012). Fasting serum C-peptide levels predict cardiovascular and overall death in nondiabetic adults. J Am Heart Assoc 1(6): e003152. DOI: 10.1161/JAHA.112.003152. PubMed DOI
Pickens CA, Matsuo KH, Fenton JI (2016). Relationship between body mass index, C-Peptide, and delta-5-desaturase enzyme activity estimates in adult males. PLoS One 11(3): e0149305. DOI: 10.1371/journal.pone.0149305. PubMed DOI
Pozzan R, Dimetz T, Gazzola HM, Gomes MB (1997). The C-peptide response to a standard mixed meal in a group of Brazilian type 1 diabetic patients. Braz J Med Biol Res 30(10): 1169-1174. DOI: 10.1590/S0100-879X1997001000005. PubMed DOI
Rebsomen L, Khammar A, Raccah D, Tsimaratos M (2008). C-peptide effects on renal physiology and diabetes. Exp Diabetes Res 2008: 281536. DOI: 10.1155/2008/281536. PubMed DOI
Wahab N, Chen R, Curb JD, Bradley J, Willcox BJ, Rodriguez BL (2018). The association of fasting glucose, insulin and C-peptide with 19-year incidence of coronary heart disease in older Japanese-American men; the Honolulu Heart Program. Geriatrics (Basel) 3(2): 22. DOI: 10.3390/geriatrics3020022. PubMed DOI
Walton C, Lees B, Crook D, Godsland IF, Stevenson JC (1995). Relationships between insulin metabolism, serum lipid profile, body fat distribution and blood pressure in healthy men. Atherosclerosis 118(1): 35-43. DOI: 10.1016/0021-9150(95)05590-s. PubMed DOI
Yosten GLC, Maric-Bilkan C, Luppi P, Wahren, J (2014). Physiological effects and therapeutic potential of proinsulin C-peptide. Am J Physiol Endocrinol Metab 307(11): 955-968. DOI: 10.1152/ajpendo.00130.2014. PubMed DOI
Zvára K, Štěpán J (2002). Pravděpodobnost a matematická statistika [The probability and mathematical statistics], 3rd ed. Prague: Matfyzpress.