• This record comes from PubMed

Vascular Response on a Novel Fibrin-Based Coated Flow Diverter

. 2022 Feb ; 45 (2) : 236-243. [epub] 20211216

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
ZF4063703AJ8 Bundesministerium für Wirtschaft und Energie

Links

PubMed 34913987
PubMed Central PMC8807434
DOI 10.1007/s00270-021-03007-9
PII: 10.1007/s00270-021-03007-9
Knihovny.cz E-resources

PURPOSE: Due to thromboembolic complications and in-stent-stenosis after flow diverter (FD) treatment, the long-term use of dual antiplatelet treatment (DAPT) is mandatory. The tested nano-coating has been shown to reduce material thrombogenicity and promote endothelial cell proliferation in vitro. We compared the biocompatibility of coated (Derivo Heal) and non-coated (Derivo bare) FDs with DAPT in an animal model. METHODS: Derivo® bare (n = 10) and Derivo® Heal (n = 10) FD were implanted in the common carotid arteries (CCAs) of New Zealand white rabbits. One additional FD, alternately a Derivo bare (n = 5) or Derivo Heal (n = 5), was implanted in the abdominal aorta (AA) for assessment of the patency of branch arteries. Histopathological examinations were performed after 28 days. Angiography was performed before and after FD implantation and at follow-up. RESULTS: Statistical analysis of the included specimens showed complete endothelialization of all FDs with no significant differences in neointima thickness between Derivo® bare and Derivo® Heal (CCA: p = 0.91; AA: p = 0.59). A significantly reduced number of macrophages in the vessel wall of the Derivo Heal was observed for the CCA (p = 0.02), and significantly reduced fibrin and platelet deposition on the surface of the Derivo Heal was observed for the AA. All branch arteries of the stented aorta remained patent. CONCLUSION: In this animal model, the novel fibrin-based coated FD showed a similar blood and tissue compatibility as the non-coated FD.

See more in PubMed

Gory B, Berge J, Bonafé A, Pierot L, Spelle L, Piotin M, et al. Flow diverters for intracranial aneurysms: the DIVERSION national prospective cohort study. Stroke. 2019;50:3471–3480. doi: 10.1161/STROKEAHA.119.024722. PubMed DOI

Xin W, Xin Q, Yuan Y, Chen S, Gao X, Zhao Y, et al. Comparison of flow diversion and coiling for the treatment of unruptured intracranial aneurysms. World Neurosurg. 2019;128:464–472. doi: 10.1016/j.wneu.2019.05.149. PubMed DOI

Brinjikji W, Murad MH, Lanzino G, Cloft HJ, Kallmes DF. Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke. 2013;44:442–447. doi: 10.1161/STROKEAHA.112.678151. PubMed DOI

Zhou G, Su M, Yin Y-L, Li M-H. Complications associated with the use of flow-diverting devices for cerebral aneurysms: a systematic review and meta-analysis. Neurosurg Focus. 2017;42:E17. doi: 10.3171/2017.3.FOCUS16450. PubMed DOI

Mühl-Benninghaus R, Haußmann A, Simgen A, Tomori T, Reith W, Yilmaz U. Transient in-stent stenosis: a common finding after flow diverter implantation. J Neurointerv Surg. 2019;11:196–199. doi: 10.1136/neurintsurg-2018-013975. PubMed DOI

Chalouhi N, Drueding R, Starke RM, Jabbour P, Dumont AS, Gonzalez LF, et al. In-stent stenosis after stent-assisted coiling: incidence, predictors and clinical outcomes of 435 cases. Neurosurgery. 2013;72:390–396. doi: 10.1227/NEU.0b013e31828046a6. PubMed DOI

Ospel JM, Brouwer P, Dorn F, Arthur A, Jensen ME, Nogueira R, et al. Antiplatelet management for stent-assisted coiling and flow diversion of ruptured intracranial aneurysms: a DELPHI consensus statement. AJNR Am J Neuroradiol. 2020;41:1856–1862. doi: 10.3174/ajnr.A6814. PubMed DOI PMC

Henkes H, Bhogal P, Aguilar Pérez M, Lenz-Habijan T, Bannewitz C, Peters M, et al. Anti-thrombogenic coatings for devices in neurointerventional surgery: Case report and review of the literature. Interv Neuroradiol. 2019;25:619–627. doi: 10.1177/1591019919858000. PubMed DOI PMC

Nelson SR, deSouza NM, Allison DJ. Endovascular stents and stent-grafts: is heparin coating desirable? Cardiovasc Intervent Radiol. 2000;23:252–255. doi: 10.1007/s002700010064. PubMed DOI

Malik N, Gunn J, Shepherd L, Crossman DC, Cumberland DC, Holt CM. Phosphorylcholine-coated stents in porcine coronary arteries: in vivo assessment of biocompatibility. J Invasive Cardiol. 2001;13:193–201. PubMed

Lenz-Habijan T, Bhogal P, Peters M, Bufe A, Martinez Moreno R, Bannewitz C, et al. Hydrophilic stent coating inhibits platelet adhesion on stent surfaces: initial results in vitro. Cardiovasc Intervent Radiol. 2018;41:1779–1785. doi: 10.1007/s00270-018-2036-7. PubMed DOI PMC

Bhogal P, Lenz-Habijan T, Bannewitz C, Hannes R, Monstadt H, Simgen A, et al. The pCONUS HPC: 30-Day and 180-day in vivo biocompatibility results. Cardiovasc Intervent Radiol. 2019;42:1008–1015. doi: 10.1007/s00270-019-02202-z. PubMed DOI PMC

Aguilar-Perez M, Hellstern V, AlMatter M, Wendl C, Bäzner H, Ganslandt O, et al. The p48 flow modulation device with hydrophilic polymer coating (HPC) for the treatment of acutely ruptured aneurysms: early clinical experience using single antiplatelet therapy. Cardiovasc Intervent Radiol. 2020;43:740–748. doi: 10.1007/s00270-020-02418-4. PubMed DOI PMC

Kaplan O, Hierlemann T, Krajewski S, Kurz J, Nevoralová M, Houska M, et al. Low-thrombogenic fibrin-heparin coating promotes in vitro endothelialization. J Biomed Mater Res A. 2017;105:2995–3005. doi: 10.1002/jbm.a.36152. PubMed DOI

Fahed R, Raymond J, Ducroux C, Gentric J-C, Salazkin I, Ziegler D, et al. Testing flow diversion in animal models: a systematic review. Neuroradiology. 2016;58:375–382. doi: 10.1007/s00234-015-1635-0. PubMed DOI

Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ. A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke. 2007;38:2346–2352. doi: 10.1161/STROKEAHA.106.479576. PubMed DOI

Ding YH, Tieu T, Kallmes DF. Experimental testing of a new generation of flow diverters in sidewall aneurysms in rabbits. AJNR Am J Neuroradiol. 2015;36:732–736. doi: 10.3174/ajnr.A4167. PubMed DOI PMC

Lenz-Habijan T, Bhogal P, Bannewitz C, Hannes R, Monstadt H, Simgen A, et al. Prospective study to assess the tissue response to HPC-coated p48 flow diverter stents compared to uncoated devices in the rabbit carotid artery model. Eur Radiol Exp. 2019;3:47. doi: 10.1186/s41747-019-0128-z. PubMed DOI PMC

Wang AS, Campos JK, Colby GP, Coon AL, Lin L-M. Cerebral aneurysm treatment trends in National Inpatient Sample 2007–2016: endovascular therapies favored over surgery. J Neurointerv Surg. 2020;12:957–963. doi: 10.1136/neurintsurg-2019-015702. PubMed DOI

Manning NW, Cheung A, Phillips TJ, Wenderoth JD. Pipeline shield with single antiplatelet therapy in aneurysmal subarachnoid haemorrhage: multicentre experience. J Neurointerv Surg. 2019;11:694–698. doi: 10.1136/neurintsurg-2018-014363. PubMed DOI PMC

Tepe G, Schmehl J, Wendel PH, Schaffner S, Heller S, Gianotti M, et al. Reduced thrombogenicity of nitinol stents—In vitro evaluation of different surface modifications and coatings. Biomaterials. 2006;27:643–650. doi: 10.1016/j.biomaterials.2005.06.004. PubMed DOI

Hårdhammar PA, van Beusekom HMM, Emanuelsson HU, Hofma SH, Albertsson PA, Verdouw PD, et al. Reduction in thrombotic events with heparin-coated Palmaz-Schatz stents in normal porcine coronary arteries. Circulation. 1996;93:423–430. doi: 10.1161/01.CIR.93.3.423. PubMed DOI

Krajewski S, Neumann B, Kurz J, Perle N, Avci-Adali M, Cattaneo G, et al. Preclinical evaluation of the thrombogenicity and endothelialization of bare metal and surface-coated neurovascular stents. AJNR Am J Neuroradiol. 2015;36:133–139. doi: 10.3174/ajnr.A4109. PubMed DOI PMC

Whelan DM, van der Giessen WJ, Krabbendam SC, van Vliet EA, Verdouw PD, Serruys PW, et al. Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart. 2000;83:338–345. doi: 10.1136/heart.83.3.338. PubMed DOI PMC

Chaabane C, Otsuka F, Virmani R, Bochaton-Piallat M-L. Biological responses in stented arteries. Cardiovasc Res. 2013;99:353–363. doi: 10.1093/cvr/cvt115. PubMed DOI

Kawasumi A, Sagawa N, Hayashi S, Yokoyama H, Tamura K. Wound healing in mammals and amphibians: toward limb regeneration in mammals. Curr Top Microbiol Immunol. 2013;367:33–49. PubMed

Brochhausen C, Schmitt VH, Mamilos A, Schmitt C, Planck CNE, Rajab TK, et al. Expression of CD68 positive macrophages in the use of different barrier materials to prevent peritoneal adhesions-an animal study. J Mater Sci Mater Med. 2017;28:15. doi: 10.1007/s10856-016-5821-3. PubMed DOI PMC

Nair MB, Varma HK, John A. Platelet-rich plasma and fibrin glue-coated bioactive ceramics enhance growth and differentiation of goat bone marrow-derived stem cells. Tissue Eng Part A. 2009;15:1619–1631. doi: 10.1089/ten.tea.2008.0229. PubMed DOI

Kopf BS, Schipanski A, Rottmar M, Berner S, Maniura-Weber K. Enhanced differentiation of human osteoblasts on Ti surfaces pre-treated with human whole blood. Acta Biomater. 2015;19:180–190. doi: 10.1016/j.actbio.2015.03.022. PubMed DOI

Cattaneo G. Concept and in vitro investigation of a new coating technology for vessel healing in flow diversion treatment. Val-d’Isère; 2020. https://www.abcwin-seminar.com/archives/programme-2020.

Schmitt VH, Mamilos A, Schmitt C, Neitzer-Planck CNE, Rajab TK, Hollemann D, et al. Tissue response to five commercially available peritoneal adhesion barriers-A systematic histological evaluation: tissue response to peritoneal adhesion barriers. J Biomed Mater Res. 2018;106:598–609. doi: 10.1002/jbm.b.33835. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...