A new cotton functionalized with iron(III) trimer-like metal framework as an effective strategy for the adsorption of triarylmethane dye: An insight into the dye adsorption processes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34934840
PubMed Central
PMC8661022
DOI
10.1016/j.heliyon.2021.e08524
PII: S2405-8440(21)02627-X
Knihovny.cz E-zdroje
- Klíčová slova
- Adsorption, Fe-BTC, Natural cotton, Solvation/desolvation penalty processes, Triphenylmetane dye, Water,
- Publikační typ
- časopisecké články MeSH
A new Cotton@Fe-BTC composite formed by Fe-BTC (BTC-H3: trimesic acid) metal framework (Fe-BTC MOF loading as high 38 wt %) supported by cellulose fiber is synthesized in aqueous media using a simple and green preparation method, described for the first time in this manuscript. This new strategy relies on the synergetic effect of the pure cellulose and MOFs frameworks resulting in hybrid nanofibers of MOFs@cellulose composite. A complete characterization of the composite material reveals its structural similarity to MIL-100(Fe), a Fe-BTC material. The Cotton@Fe-BTC composite potential use as an eco-friendly and low-cost adsorbent was evaluated for its adsorptive performance for the removal of dye belonging to the triarylmethane dye family (Malachite Green (MQ), Brilliant Green (BG), Pararosaniline (PR), Basic Fuchsine (BF), Crystal Violet (CV), Methyl Green (Met-G), Victoria Blue B (VB), Acid Fuchsin (AF) and Aniline Blue (AB)) in aqueous solution. The fast kinetics and high dye removal efficiencies (>90%) obtained in aqueous solutions. The structure of Cotton@Fe-BTC network, contributed to the remarkable adsorption properties towards a variety of triphenylmethanedye. The interparticle studies showed two main steps in the dye adsorption processes, with the exception of AF and BG. The equilibrium adsorption capacities qe (mg/g) follow the order: AF (3.64)
Inorganic Chemistry Area Section of Chemistry Faculty of Science Tenerife Spain
Instituto Universitario de Bio Orgánica Antonio González University of La Laguna Tenerife Spain
Zobrazit více v PubMed
Berradi M., Hsissou R., Khudhair M., Assouag M., Cherkaoui O., El Bachiri A., El Harfi A. Textile finishing dye and their impact on aquatic environs. Heliyon. 2019;5 PubMed PMC
Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C. Effects of textile dye on health and the environment and bioremediation potential of living organisms. Biotechn. Res. Innov. 2019;3:275–290.
Sartape A.S., Mandhare A.M., Jadhav V.V., Raut P.D., Anuse M.A., Kolekar S.S. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab. J. Chem. 2017;10:S3229–S3238.
Nandi B.K., Goswani A., Purkait M.K. Adsorption characteristics of brilliant green dye on kaolin. J. Hazard Mater. 2009;161:387–395. PubMed
Mittal A., Ahmad R., Hasan I. Iron oxide-impregnated dextrin nanocomposite: synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution. Desalin. Water Treat. 2016;57:15133–15145.
Murray A., Örmeci B. Competitive effects of humic acid and wastewater on adsorption of Methylene Blue dye by activated carbon and non-imprinted polymers. J. Environ. Sci. 2018;66:310–317. PubMed
Shaban M., Abukhadra M.R., Shahien M.G., Ibrahim S.S. Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dye. Environ. Chem. Lett. 2018;16:275–280.
Thair S.S., Rauf N. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere. 2006;63:1842–1848. PubMed
Tu N.T.T., Thien T.V., Du P.D., Chau V.T.T., Mau T.X., Khieu D.Q. Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework–67. J. Environ. Chem. Engineering. 2018;6:2269–2280.
López-Gutiérrez N., Romero-González R., Vidal J.L.M., Frenich A.G. Analysis of triphenylmethane dye in seafood products: a review of extraction methods and determination by liquid chromatography coupled to mass spectrometry. Anal. Methods. 2013;5:3434–3449.
Horike S., Kitagawa S. In: Wiley-VCH Verlag GmbH & Co. KGaA. Wiley-VCH Verlag GmbH & Co. KGaA. first ed. Farrusseng David., editor. 2011. Metal-organic frameworks: applications from catalysis to gas storage; pp. 3–22.
Ma L., Lin W. Designing metal-organic frameworks for catalytic applications. Top. Curr. Chem. 2010;293:175–205. PubMed
Aakeroy C.B., Champness N.R., Janiak C. Recent advances in crystal engineering. CrystEngComm. 2010;12:22–43.
Yaghi O.M., Li H., Groy T.L. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. J. Am. Chem. Soc. 1996;118:9096–9101.
Janiak C., Vieth J.K. MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) New J. Chem. 2010;34:2366–2388.
Bellusci M., Guglielmi P., Masi A., Padella F., Singh G., Yaacoub N., Peddis D., Secci D. Magnetic Metal−Organic framework composite by fast and facile mechanochemical process. Inorg. Chem. 2018;57:1806–1814. PubMed
Rmit R.A.S. Chemistry and structure of cellulosic fibers as reinforcements in natural fiber composites. Natural Fiber Composites. 2014:66–83.
Tavakolian M., Jafari S.M., van de Ven T.G.M. A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett. 2020;12:73–95. PubMed PMC
da Silva Pinto M., Augusto Sierra-Avila C., Hinestroza J.P. In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose. 2012;19:1771–1779.
Abdelhameed R.M., Abdel-Gawad H., Elshahat M., Emam H.E. Cu–BTC@cotton composite: design and removal of ethion insecticide from water. RSC Adv. 2016;6:42324–42333.
Sua Y., Wanga S., Zhanga N., Cuia P., Gaoa Y., Baoa T. Zr-MOF modified cotton fiber for pipette tip solid-phase extraction of four phenoxy herbicides in complex samples. Ecotoxicol. Environ. Saf. 2020;201:110764–110771. PubMed
Bao T., Su Y., Gao N.Z.Y., Wang S. Hydrophilic carboxyl cotton for in situ growth of UiO-66 and its application as adsorbents. Ind. Eng. Chem. Res. 2019;58:20331–20339.
Yang A., Wang Z., Zhu Y. Facile preparation and adsorption performance of low-cost MOF@ cotton fiber composite for uranium removal. Sci. Rep. 2020;10:19271–19281. PubMed PMC
Emam H.E., Ahmed H.B., Gomaa E., Helal M.H., Abdelhameed R.M. Recyclable photocatalyst composites based on Ag3VO4 and Ag2WO4@MOF@cotton for effective discoloration of dye in visible light. Cellulose. 2020;27:7139–7155.
Au V.K.-M. Recent advances in the use of metal-organic frameworks for dye adsorption. Front. Chem. 2020;8:708–715. PubMed PMC
Parmar B., Bisht K.K., Rajput G., Suresh E. Recent advances in metal–organic frameworks as adsorbent materials for hazardous dye molecules. Dalton Trans. 2021;50:3083–3108. PubMed
Uflyand I.E., Zhinzhilo V.A., Nikolaevskaya V.O., Kharisov B.I., González C.M.O., Kharissova O.V. Recent strategies to improve MOF performance in solid phase extraction of organic dye. Microchem. J. 2021;168:106387–106411.
Peña-Méndez E.M., Mawale R.M., Conde-González J.E., Socas-Rodríguez B., Havel J., Ruiz-Pérez C. Metal organic framework composite, nano-Fe3O4@Fe-(benzene-1,3,5- tricarboxylic acid), for solid phase extraction of blood lipid regulators from water. Talanta. 2020;207:120275–120282. PubMed
Ling Z., Chen S., Zhang X., Takabe K., Xu F. Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Sci. Rep. 2017;7:10230–12240. PubMed PMC
Sánchez-Sanchez M., de Asua I., Ruano D., Díaz K. Direct synthesis, structural features and enhanced catalytic activity of the Basolite F300-like semi-amorphous Fe-BTC framework. Cryst. Growth Des. 2015;15:4498–4506.
Sapnik A.F., Bechis I., Collins S.M., Johnstone D.N., Divitini G., Smith A.J., Chater P.A., Addicoat M.A., Johnson T., Keen D.A., Jelfs K.E., Bennett T.D. Mixed hierarchical local structure in a disordered metal–organic framework. Nat. Commun. 2021;12:2062–2073. PubMed PMC
Mahalakshmi G., Balachandran V. FT-IR and FT-Raman spectra, normal coordinate analysis and ab initio computations of Trimesic acid. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014;124:535–547. PubMed
Xiao D.J., Bloch E.D., Mason J.A., Queen W.L., Hudson M.R., Planas N., Borycz J., Dzubak A.L., Verma P., Lee K., Bonino F., Crocella V., Yano J., Bordiga S., Truhlar D.G., Gagliardi L., Brown C.M., Long J.R. Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron(II) sites. Nat. Chem. 2014;6:590–595. PubMed
Anand R., Borghi F., Manoli F., Manet I., Agostoni V., Reschiglian P., Gref R., Monti S. Host−Guest interactions in Fe(III)-Trimesate MOF nanoparticles loaded with doxorubicin. J. Phys. Chem. B. 2014;118:8532–8539. PubMed
Horcajada P., Surblé S., Serre C., Hong D.-Y., Seo Y.-K., Chang J.-S., Grenéche J.-M., Margiolakid I., Féreya G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 2007:2820–2822. PubMed
Dhakshinamoorthy A., Alvaro M., Horcajada P., Gibson E., Vishnuvarthan M., Vimont A., Grenéche J.-M., Serre C., Daturi M., Garcia H. Comparison of porous iron trimesates basolite F300 and MIL-100(Fe) as heterogeneous catalysts for lewis acid and oxidation reactions: roles of structural defects and stability. ACS Catal. 2012;2:2060–2065.
Ciattini S., Costantino F., Lorenzo-Luis P., Midollini S., Orlandini A., Vacca A. Inorganic-organic hybrids formed by P,P´-Diphenylmethylenediphosphinate, pcp2-, with the Cu2+ ion. X-Ray crystal structures of [Cu(pcp)(H2O)2]·H2O and [Cu(pcp)(bipy)(H2O)] Inorg. Chem. 2005;44:4008–4016. PubMed
Das M.C., Maity S.B., Bharadwaj P.K. Supramolecular association of water molecules forming discrete clusters in the voids of coordination polymers. Curr. Opin. Solid State Mater. Sci. 2009;13:76–90.
Otun K.O. Temperature-controlled activation and characterization of iron-based metalorganic frameworks. Inorg. Chim. Acta. 2020;507:119563–119567.
Qin P., Yang Y., Zhang X., Niu J., Yang H., Tian S., Zhu J., Lu M. Highly efficient, rapid, and simultaneous removal of cationic dye from aqueous solution using monodispersed mesoporous silica nanoparticles as the adsorbent. Nanomaterials. 2018;8:1–14. PubMed PMC
Nvetha R., Kollu R.P., Chandar K., Pitchaimuthu S., Jeong S.K., Grace A.N. Role of MIL-53(Fe)/hydrated–dehydrated MOF catalyst for electrochemical hydrogen evolution reaction (HER) in alkaline medium and photocatalysis. RSC Adv. 2019;9:3215–3223. PubMed PMC
Conde-González J.E., Peña-Méndez E.M., Melián-Fernández A.M., Havel J., Salvadó V. Synthesis, performance and mechanism of nanoporous Fe-(1,3,5-tricarboxylic acid) metal-organic framework in the removal of anionic dye from water. Environ. Nanotechn. Monitor. Manag. 2021;16:100541–100549.
Havel J., Högfeldt E. Computer evaluation of water sorption ion exchangers. Talanta. 1992;39:517–522. PubMed
Tsou L.K., Tatko C.D., Waters M.L. Simple cation- π interaction between a phenyl ring and a protonated amine stabilizes an α-helix in water. J. Am. Chem. Soc. 2002;124:14917–14921. PubMed
Sims P.A., Wong C.F., Vuga D., McCammon J.A., Sefton B.M. Relative contributions of desolvation, inter- and intramolecular interactions to binding affinity in protein kinase systems. J. Comput. Chem. 2005;26:668–681. PubMed
Ma Y.-L., Quan M., Lin X.-L., Cheng Q., Yao H., Yang X.-R., Li M.-S., Er Liu W.-, Bai L.-M., Wang R., Jiang W. Biomimetic recognition of organic drug molecules in water by amide naphthotubes. CCS Chem. 2020;2:1078–1092.
Al-Degs Y.S., Khraisheh M.A.M., Allen S.J., Ahmad M.N. Adsorption characteristics of reactive dyes in columns of activated carbon. J. Hazard Mater. 2009;165:944–949. PubMed
Leng F., Wang W., Zhao X.J., Hu X.L., Li Y.F. Adsorption interaction between a metal–organic framework of chromium–benzenedicarboxylates and uranine in aqueous solution. Colloid. Surface. Physicochem. Eng. Aspect. 2014;441:164–169.
Ganguly M., Ariya P.A. Novel technology for the removal of brilliant green from water: influence of post-oxidation, environmental conditions, and capping. ACS Omega. 2019;4:12107–12120. PubMed PMC
Conde-González J.E., Peña-Méndez E.M., Rybáková S., Pasán J., Ruiz-Pérez C., Havel J. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1) Chemosphere. 2016;150(150):659–666. PubMed
Kumar R., Ansari M.O., Barakat M.A. Adsorption of brilliant green by surfactant doped polyaniline/MWCNTs composite: evaluation of the kinetic, thermodynamic, and isotherm. Ind. Eng. Chem. Res. 2014;53:7167–7175.
Saadi R., Saadi Z., Fazaeli R., Fard N.E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Kor. J. Chem. Eng. 2015;32:787–799.
Foo K.Y., Hameed B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010;156:2–10.
Singha B., Das S.K. Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surf. B Biointerfaces. 2013;107:97–106. PubMed
Adeyemo A.A., Adeoye I.O., Bello O.S. Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicol. Environ. Chem. 2012;94:1846–1863.
Monash P., Pugazhenthi G. Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption. 2009;15:390–405.