Track Structure-Based Simulations on DNA Damage Induced by Diverse Isotopes
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
institutional funding
Nuclear Physics Institute of the Czech Academy of Sciences
institutional funding
Helmholtz Zentrum München
institutional funding
University of Pavia
21-06451S
Czech Science Foundation
Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000728
Ministry of Education, Youth and Sport of the Czech Republic
PubMed
36430172
PubMed Central
PMC9690858
DOI
10.3390/ijms232213693
PII: ijms232213693
Knihovny.cz E-resources
- Keywords
- DNA damage, Monte Carlo simulations, analytical functions, ionizing radiation, isotopes, track structure,
- MeSH
- DNA MeSH
- Ions MeSH
- Isotopes * MeSH
- Monte Carlo Method MeSH
- DNA Damage * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA MeSH
- Ions MeSH
- Isotopes * MeSH
Diverse isotopes such as 2H, 3He, 10Be, 11C and 14C occur in nuclear reactions in ion beam radiotherapy, in cosmic ray shielding, or are intentionally accelerated in dating techniques. However, only a few studies have specifically addressed the biological effects of diverse isotopes and were limited to energies of several MeV/u. A database of simulations with the PARTRAC biophysical tool is presented for H, He, Li, Be, B and C isotopes at energies from 0.5 GeV/u down to stopping. The doses deposited to a cell nucleus and also the yields per unit dose of single- and double-strand breaks and their clusters induced in cellular DNA are predicted to vary among diverse isotopes of the same element at energies < 1 MeV/u, especially for isotopes of H and He. The results may affect the risk estimates for astronauts in deep space missions or the models of biological effectiveness of ion beams and indicate that radiation protection in 14C or 10Be dating techniques may be based on knowledge gathered with 12C or 9Be.
Radiation Biophysics and Radiobiology Group Physics Department University of Pavia 27100 Pavia Italy
See more in PubMed
Barendsen G.W. RBE-LET relationships for different types of lethal radiation damage in mammalian cells: Comparison with DNA DSB and an interpretation of differences in radiosensitivity. Int. J. Radiat. Biol. 1994;66:433–436. doi: 10.1080/09553009414551411. PubMed DOI
Prise K.M., Ahnström G., Belli M., Carlsson J., Frankenberg D., Kiefer J., Löbrich M., Michael B.D., Nygren J., Simone G., et al. A review of DSB induction data for varying quality radiations. Int. J. Radiat. Biol. 1998;74:173–184. doi: 10.1080/095530098141564. PubMed DOI
Rydberg B. Radiation-induced DNA damage and chromatin structure. Acta Oncol. 2001;40:682–685. doi: 10.1080/02841860152619070. PubMed DOI
Hada M., Georgakilas A.G. Formation of clustered DNA damage after high-LET irradiation: A review. J. Radiat. Res. 2008;49:203–210. doi: 10.1269/jrr.07123. PubMed DOI
Nikitaki Z., Velalopoulou A., Zanni V., Tremi I., Havaki S., Kokkoris M., Gorgoulis V.G., Koumenis C., Georgakilas A.G. Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev. Mol. Med. 2022;24:e15. doi: 10.1017/erm.2022.6. PubMed DOI
Friedland W., Dingfelder M., Kundrát P., Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat. Res. 2011;711:28–40. doi: 10.1016/j.mrfmmm.2011.01.003. PubMed DOI
Nikjoo H., Emfietzoglou D., Liamsuwan T., Taleei R., Liljequist D., Uehara S. Radiation track, DNA damage and response-a review. Rep. Prog. Phys. 2016;79:116601. doi: 10.1088/0034-4885/79/11/116601. PubMed DOI
Loeffler J.S., Durante M. Charged particle therapy—Optimization, challenges and future directions. Nat. Rev. Clin. Oncol. 2013;10:411–424. doi: 10.1038/nrclinonc.2013.79. PubMed DOI
Kirkby K.J., Kirkby N.F., Burnet N.G., Owen H., Mackay R.I., Crellin A., Green S. Heavy charged particle beam therapy and related new radiotherapy technologies: The clinical potential, physics and technical developments required to deliver benefit for patients with cancer. Br. J. Radiol. 2020;93:20200247. doi: 10.1259/bjr.20200247. PubMed DOI PMC
Haettner E., Iwase H., Schardt D. Experimental fragmentation studies with 12C therapy beams. Radiat. Prot. Dosim. 2006;122:485–487. doi: 10.1093/rpd/ncl402. PubMed DOI
Gunzert-Marx K., Iwase H., Schardt D., Simon R.S. Secondary beam fragments produced by 200 MeV u−1 12C ions in water and their dose contributions in carbon ion radiotherapy. New. J. Phys. 2008;10:075003. doi: 10.1088/1367-2630/10/7/075003. DOI
Fiedler F., Priegnitz M., Jülich R., Pawelke J., Crespo P., Parodi K., Pönisch F., Enghardt W. In-beam PET measurements of biological half-lives of 12C irradiation induced beta+-activity. Acta Oncol. 2008;47:1077–1086. doi: 10.1080/02841860701769743. PubMed DOI
Bellinzona E.V., Grzanka L., Attili A., Tommasino F., Friedrich T., Krämer M., Scholz M., Battistoni G., Embriaco A., Chiappara D., et al. Biological impact of target fragments on proton treatment plans: An analysis based on the current cross-section data and a full mixed field approach. Cancers. 2021;13:4768. doi: 10.3390/cancers13194768. PubMed DOI PMC
Horst F., Schardt D., Iwase H., Schuy C., Durante M., Weber U. Physical characterization of 3He ion beams for radiotherapy and comparison with 4He. Phys. Med. Biol. 2021;66:095009. doi: 10.1088/1361-6560/abef88. PubMed DOI
Kanazawa M., Kitagawa A., Kouda S., Nishio T., Torikoshi M., Noda K., Murakami T., Suda M., Tomitani T., Kanai T., et al. Application of an RI-beam for cancer therapy: In-vivo verification of the ion-beam range by means of positron imaging. Nucl. Phys. A. 2002;701:244–252. doi: 10.1016/S0375-9474(01)01592-5. DOI
Cucinotta F.A., Townsend L.W., Wilson J.W., Shinn J.L., Badhwar G.D., Dubey R.R. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory. Adv. Space Res. 1996;17:77–86. doi: 10.1016/0273-1177(95)00515-G. PubMed DOI
Norbury J.W., Slaba T.C. Space radiation accelerator experiments—The role of neutrons and light ions. Life Sci. Space Res. 2014;3:90–94. doi: 10.1016/j.lssr.2014.09.006. DOI
Adriani O., Barbarino G.C., Bazilevskaya G.A., Bellotti R., Boezio M., Bogomolov E.A., Bongi M., Bonvicini V., Bottai S., Bruno A., et al. Measurements of cosmic-ray hydrogen and helium isotopes with the PAMELA experiment. Astrophys. J. 2016;818:68. doi: 10.3847/0004-637X/818/1/68. DOI
Townsend L.W., Adams J.H., Blattnig S.R., Clowdsley M.S., Fry D.J., Jun I., McLeod C.D., Minow J.I., Moore D.F., Norbury J.W., et al. Solar particle event storm shelter requirements for missions beyond low Earth orbit. Life Sci. Space Res. 2018;17:32–39. doi: 10.1016/j.lssr.2018.02.002. PubMed DOI
Kutschera W. Accelerator mass spectrometry: State of the art and perspectives. Adv. Phys. X. 2016;1:570–595. doi: 10.1080/23746149.2016.1224603. DOI
Belli M., Cera F., Cherubini R., Goodhead D.T., Haque A.M.I., Ianzini F., Moschini G., Nikjoo H., Sapora O., Simone G., et al. Inactivation induced by deuterons of various LET in V79 cells. Radiat. Prot. Dosim. 1994;52:305–310. doi: 10.1093/oxfordjournals.rpd.a082205. DOI
Folkard M., Prise K.M., Vojnovic B., Newman H.C., Roper M.J., Michael B.D. Inactivation of V79 cells by low-energy protons, deuterons and helium-3 ions. Int. J. Radiat. Biol. 1996;69:729–738. doi: 10.1080/095530096145472. PubMed DOI
Bettega D., Calzolari P., Marchesini R., Noris Chiorda G.L., Piazzolla A., Tallone L., Cera F., Cherubini R., Dalla Vecchia M., Favaretto S., et al. Inactivation of C3H10T1/2 cells by low energy protons and deuterons. Int. J. Radiat. Biol. 1998;73:303–309. doi: 10.1080/095530098142400. PubMed DOI
Belli M., Cherubini R., Dalla Vecchia M., Dini V., Moschini G., Signoretti C., Simone G., Tabocchini M.A., Tiveron P. DNA DSB induction and rejoining in V79 cells irradiated with light ions: A constant field gel electrophoresis study. Int. J. Radiat. Biol. 2000;76:1095–1104. doi: 10.1080/09553000050111569. PubMed DOI
Barendsen G.W., Walter H.M., Fowler J.F., Bewley D.K. Effects of different ionizing radiations on human cells in tissue culture. III. Experiments with cyclotron-accelerated alpha-particles and deuterons. Radiat. Res. 1963;18:106–119. doi: 10.2307/3571430. PubMed DOI
Bird R.P., Rohrig N., Colvett R.D., Geard C.R., Marino S.A. Inactivation of synchronized Chinese Hamster V79 cells with charged-particle track segments. Radiat. Res. 1980;82:277–289. doi: 10.2307/3575379. PubMed DOI
Hei T.K., Chen D.J., Brenner D.J., Hall E.J. Mutation induction by charged particles of defined linear energy transfer. Carcinogenesis. 1988;9:1233–1236. doi: 10.1093/carcin/9.7.1233. PubMed DOI
Tommasino F., Friedrich T., Scholz U., Taucher-Scholz G., Durante M., Scholz M. A DNA double-strand break kinetic rejoining model based on the local effect model. Radiat. Res. 2013;180:524–538. doi: 10.1667/RR13389.1. PubMed DOI
Curtis S.B. Lethal and potentially lethal lesions induced by radiation—A unified repair model. Radiat. Res. 1986;10:252–270. doi: 10.2307/3576798. Erratum in Radiat. Res. 1989, 119, 584. PubMed DOI
Hawkins R.B. A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE with LET. Radiat. Res. 2003;160:61–69. doi: 10.1667/RR3010. PubMed DOI
Lind B.K., Persson L.M., Edgren M.R., Hedlöf I., Brahme A. Repairable-conditionally repairable damage model based on dual Poisson processes. Radiat. Res. 2003;160:366–375. doi: 10.1667/0033-7587(2003)160[0366:RRDMBO]2.0.CO;2. PubMed DOI
Kundrát P. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions. Phys. Med. Biol. 2006;51:1185–1199. doi: 10.1088/0031-9155/51/5/010. PubMed DOI
Friedrich T., Scholz U., Elsässer T., Durante M., Scholz M. Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int. J. Radiat. Biol. 2012;88:103–107. doi: 10.3109/09553002.2011.611213. PubMed DOI
Friedland W., Schmitt E., Kundrát P., Dingfelder M., Baiocco G., Barbieri S., Ottolenghi A. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Sci. Rep. 2017;7:45161. doi: 10.1038/srep45161. PubMed DOI PMC
Kundrát P., Friedland W., Becker J., Eidemüller M., Ottolenghi A., Baiocco G. Analytical formulas representing track-structure simulations on DNA damage induced by protons and light ions at radiotherapy-relevant energies. Sci. Rep. 2020;10:15775. doi: 10.1038/s41598-020-72857-z. PubMed DOI PMC
Kundrát P., Friedland W., Ottolenghi A., Baiocco G. Coupling radiation transport and track-structure simulations: Strategy based on analytical formulas representing DNA damage yields. Front. Phys. 2021;9:719682. doi: 10.3389/fphy.2021.719682. DOI
ICRU Report 49: Stopping Powers and Ranges for Protons and Alpha Particles. International Commission on Radiation Units and Measurements; Bethesda, MD, USA: 1993.
NIST—National Institute of Standards and Technology; Gaithersburg, MD, USA: [(accessed on 31 May 2022)]. PSTAR—Stopping-Power and Range Tables for Protons. Available online: https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html.
Friedland W., Kundrát P., Schmitt E., Becker J., Li W. Modeling DNA damage by photons and light ions over energy ranges used in medical applications. Radiat. Prot. Dosim. 2019;183:84–88. doi: 10.1093/rpd/ncy245. PubMed DOI
Kreipl M.S., Friedland W., Paretzke H.G. Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation. Radiat. Env. Biophys. 2009;48:11–20. doi: 10.1007/s00411-008-0194-8. PubMed DOI
Friedland W., Jacob P., Kundrát P. Stochastic simulation of DNA double-strand break repair by non-homologous end joining based on track structure calculations. Radiat. Res. 2010;173:677–688. doi: 10.1667/RR1965.1. PubMed DOI
Friedland W., Kundrát P. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation. Mutat. Res. 2013;756:213–223. doi: 10.1016/j.mrgentox.2013.06.013. PubMed DOI
Friedland W., Kundrát P. Chromosome aberration model combining radiation tracks, chromatin structure, DSB repair and chromatin mobility. Radiat. Prot. Dosim. 2015;166:71–74. doi: 10.1093/rpd/ncv174. PubMed DOI
Friedland W., Kundrát P., Jacob P. Track structure calculations on hypothetical subcellular targets for the release of cell-killing signals in bystander experiments with medium transfer. Radiat. Prot. Dosim. 2011;143:325–329. doi: 10.1093/rpd/ncq401. PubMed DOI
Kundrát P., Friedland W. Track structure calculations on intracellular targets responsible for signal release in bystander experiments with transfer of irradiated cell-conditioned medium. Int. J. Radiat. Biol. 2012;88:98–102. doi: 10.3109/09553002.2011.595874. PubMed DOI
Friedland W., Schmitt E., Kundrát P., Baiocco G., Ottolenghi A. Track-structure simulations of energy deposition patterns to mitochondria and damage to their DNA. Int. J. Radiat. Biol. 2019;95:3–11. doi: 10.1080/09553002.2018.1450532. PubMed DOI
Dingfelder M., Inokuti M., Paretzke H.G. Inelastic-collision cross sections of liquid water for interactions of energetic protons. Radiat. Phys. Chem. 2000;59:255–275. doi: 10.1016/S0969-806X(00)00263-2. DOI
Friedland W., Dingfelder M., Jacob P., Paretzke H.G. Calculated DNA double-strand break and fragmentation yields after irradiation with He ions. Radiat. Phys. Chem. 2005;72:279–286. doi: 10.1016/j.radphyschem.2004.05.053. DOI
Schmitt E., Friedland W., Kundrát P., Dingfelder M., Ottolenghi A. Cross-section scaling for track structure simulations of low-energy ions in liquid water. Radiat. Prot. Dosim. 2015;166:15–18. doi: 10.1093/rpd/ncv302. PubMed DOI
ICRU Report 36: Microdosimetry. International Commission on Radiation Units and Measurements; Bethesda, MD, USA: 1983.