Analytical formulas representing track-structure simulations on DNA damage induced by protons and light ions at radiotherapy-relevant energies
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
32978459
PubMed Central
PMC7519066
DOI
10.1038/s41598-020-72857-z
PII: 10.1038/s41598-020-72857-z
Knihovny.cz E-zdroje
- MeSH
- dvouřetězcové zlomy DNA účinky záření MeSH
- lidé MeSH
- lineární přenos energie MeSH
- metoda Monte Carlo * MeSH
- poškození DNA * MeSH
- protony * MeSH
- radioterapie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protony * MeSH
Track structure based simulations valuably complement experimental research on biological effects of ionizing radiation. They provide information at the highest level of detail on initial DNA damage induced by diverse types of radiation. Simulations with the biophysical Monte Carlo code PARTRAC have been used for testing working hypotheses on radiation action mechanisms, for benchmarking other damage codes and as input for modelling subsequent biological processes. To facilitate such applications and in particular to enable extending the simulations to mixed radiation field conditions, we present analytical formulas that capture PARTRAC simulation results on DNA single- and double-strand breaks and their clusters induced in cells irradiated by ions ranging from hydrogen to neon at energies from 0.5 GeV/u down to their stopping. These functions offer a means by which radiation transport codes at the macroscopic scale could easily be extended to predict biological effects, exploiting a large database of results from micro-/nanoscale simulations, without having to deal with the coupling of spatial scales and running full track-structure calculations.
Department of Radiation Dosimetry Nuclear Physics Institute CAS Prague Czech Republic
Radiation Biophysics and Radiobiology Group Physics Department University of Pavia Pavia Italy
Zobrazit více v PubMed
Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. 8. Philadelphia: Wolters Kluwer; 2019.
Friedland W, Kundrát P. Stochastic multi-scale modeling of biological effects induced by ionizing radiation. In: El Naqa I, editor. A Guide to Outcome Modeling in Radiotherapy and Oncology: Listening to the Data. Boca Raton: CRC Press; 2018.
McMahon SJ, Prise KM. Mechanistic modelling of radiation responses. Cancers (Basel) 2019;11:E205. doi: 10.3390/cancers11020205. PubMed DOI PMC
Nikjoo H, et al. Radiation track, DNA damage and response—A review. Rep. Prog. Phys. 2016;79:116601. doi: 10.1088/0034-4885/79/11/116601. PubMed DOI
Friedland W, Jacob P, Kundrát P. Stochastic simulation of DNA double-strand break repair by non-homologous end joining based on track structure calculations. Radiat. Res. 2010;173:677–688. doi: 10.1667/RR1965.1. PubMed DOI
Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat. Res. 2011;711:28–40. doi: 10.1016/j.mrfmmm.2011.01.003. PubMed DOI
Friedland W, Jacob P, Kundrát P. Mechanistic simulation of radiation damage to DNA and its repair: On the track towards systems radiation biology modelling. Radiat. Prot. Dosimetry. 2011;143:542–548. doi: 10.1093/rpd/ncq383. PubMed DOI
Friedland W, Kundrát P, Jacob P. Stochastic modelling of DSB repair after photon and ion irradiation. Int. J. Radiat. Biol. 2012;88:129–136. doi: 10.3109/09553002.2011.611404. PubMed DOI
Friedland W, Kundrát P. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation. Mutat. Res. 2013;756:213–223. doi: 10.1016/j.mrgentox.2013.06.013. PubMed DOI
Friedland W, Kundrát P. Chromosome aberration model combining radiation tracks, chromatin structure, DSB repair and chromatin mobility. Radiat. Prot. Dosimetry. 2015;166:71–74. doi: 10.1093/rpd/ncv174. PubMed DOI
Friedland W, et al. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Sci. Rep. 2017;7:45161. doi: 10.1038/srep45161. PubMed DOI PMC
Friedland W, Kundrát P, Schmitt E, Becker J, Li W. Modeling DNA damage by photons and light ions over energy ranges used in medical applications. Radiat. Prot. Dosimetry. 2019;183:84–88. doi: 10.1093/rpd/ncy245. PubMed DOI
Tobias CA. The repair-misrepair model in radiobiology: comparison to other models. Radiat. Res. 1985;8:S77–95. doi: 10.2307/3576635. PubMed DOI
Curtis SB. Lethal and potentially lethal lesions induced by radiation—A unified repair model. Radiat. Res. 1986;106:252–270. doi: 10.2307/3576798. PubMed DOI
Scholz M, Kraft G. Track structure and the calculation of biological effects of heavy charged particles. Adv. Space Res. 1996;18:5–14. doi: 10.1016/0273-1177(95)00784-C. PubMed DOI
Sachs RK, Hahnfeld P, Brenner DJ. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int. J. Radiat. Biol. 1997;72:351–374. doi: 10.1080/095530097143149. PubMed DOI
Kundrát P, Lokajíček M, Hromčíková H. Probabilistic two-stage model of cell inactivation by ionizing particles. Phys. Med. Biol. 2005;50:1433–1447. doi: 10.1088/0031-9155/50/7/007. PubMed DOI
Kundrát P. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions. Phys. Med. Biol. 2006;51:1185–1199. doi: 10.1088/0031-9155/51/5/010. PubMed DOI
Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M. Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int. J. Radiat. Biol. 2012;88:103–107. doi: 10.3109/09553002.2011.611213. PubMed DOI
Friedland W, Kundrát P, Jacob P. Track structure calculations on hypothetical subcellular targets for the release of cell-killing signals in bystander experiments with medium transfer. Radiat. Prot. Dosimetry. 2011;143:325–329. doi: 10.1093/rpd/ncq401. PubMed DOI
Kundrát P, Friedland W. Track structure calculations on intracellular targets responsible for signal release in bystander experiments with transfer of irradiated cell-conditioned medium. Int. J. Radiat. Biol. 2012;88:98–102. doi: 10.3109/09553002.2011.595874. PubMed DOI
Friedland W, Schmitt E, Kundrát P, Baiocco G, Ottolenghi A. Track-structure simulations of energy deposition patterns to mitochondria and damage to their DNA. Int. J. Radiat. Biol. 2019;95:3–11. doi: 10.1080/09553002.2018.1450532. PubMed DOI
Kundrát P, Friedland W. Mechanistic modelling of radiation-induced bystander effects. Radiat. Prot. Dosimetry. 2015;166:148–151. doi: 10.1093/rpd/ncv170. PubMed DOI
Kundrát P, Friedland W. Non-linear response of cells to signals leads to revised characteristics of bystander effects inferred from their modelling. Int. J. Radiat. Biol. 2012;88:743–750. doi: 10.3109/09553002.2012.698029. PubMed DOI
Kundrát P, Bauer G, Jacob P, Friedland W. Mechanistic modelling suggests that the size of preneoplastic lesions is limited by intercellular induction of apoptosis in oncogenically transformed cells. Carcinogenesis. 2012;33:253–259. doi: 10.1093/carcin/bgr227. PubMed DOI PMC
Kundrát P, Friedland W. Impact of intercellular induction of apoptosis on low-dose radiation carcinogenesis. Radiat. Prot. Dosimetry. 2015;166:170–173. doi: 10.1093/rpd/ncv169. PubMed DOI
Kundrát P, Friedland W. Enhanced release of primary signals may render intercellular signalling ineffective due to spatial aspects. Sci. Rep. 2016;6:33214. doi: 10.1038/srep33214. PubMed DOI PMC
Bernal MA, et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Med. 2015;31:861–874. doi: 10.1016/j.ejmp.2015.10.087. PubMed DOI
Siragusa M, et al. The COOLER code: A novel analytical approach to calculate subcellular energy deposition by internal electron emitters. Radiat. Res. 2017;188:204–220. doi: 10.1667/RR14683.1. PubMed DOI
Meylan S, et al. Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA. Sci. Rep. 2017;7:11923. doi: 10.1038/s41598-017-11851-4. PubMed DOI PMC
Okada S, Murakami K, Incerti S, Amako K, Sasaki T. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale. Med. Phys. 2019;46:1483–1500. doi: 10.1002/mp.13370. PubMed DOI PMC
Semenenko VA, Stewart RD. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys. Med. Biol. 2006;51:1693–1706. doi: 10.1088/0031-9155/51/7/004. PubMed DOI
Baiocco G, et al. The origin of neutron biological effectiveness as a function of energy. Sci. Rep. 2016;6:34033. doi: 10.1038/srep34033. PubMed DOI PMC
Baiocco G, et al. At the physics-biology interface: The neutron affair. Radiat. Prot. Dosimetry. 2018;180:278–281. doi: 10.1093/rpd/ncx222. PubMed DOI
Barbieri S, et al. Predicting DNA damage foci and their experimental readout with 2D microscopy: A unified approach applied to photon and neutron exposures. Sci. Rep. 2019;9:14019. doi: 10.1038/s41598-019-50408-5. PubMed DOI PMC
Schuemann J, et al. A new standard DNA damage (SDD) data format. Radiat. Res. 2019;191:76–92. doi: 10.1667/RR15209.1. PubMed DOI PMC
Schmitt E, Friedland W, Kundrát P, Dingfelder M, Ottolenghi A. Cross-section scaling for track structure simulations of low-energy ions in liquid water. Radiat. Prot. Dosimetry. 2015;166:15–18. doi: 10.1093/rpd/ncv302. PubMed DOI
Kreipl MS, Friedland W, Paretzke HG. Interaction of ion tracks in spatial and temporal proximity. Radiat. Environ. Biophys. 2009;48:349–359. doi: 10.1007/s00411-009-0234-z. PubMed DOI
Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J. Radiat. Res. 2013;54:494–514. doi: 10.1093/jrr/rrs114. PubMed DOI PMC
Surdutovich E, Solov’yov AV. Multiscale modeling for cancer radiotherapies. Cancer Nano. 2019;10:6. doi: 10.1186/s12645-019-0051-2. DOI
Mairani A, et al. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy. Phys. Med. Biol. 2010;55:4273–4289. doi: 10.1088/0031-9155/55/15/006. PubMed DOI
Stewart RD, et al. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions. Phys. Med. Biol. 2015;60:8249–8274. doi: 10.1088/0031-9155/60/21/8249. PubMed DOI
Verkhovtsev A, Surdutovich E, Solov’yov AV. Phenomenon-based evaluation of relative biological effectiveness of ion beams by means of the multiscale approach. Cancer Nano. 2019;10:4. doi: 10.1186/s12645-019-0049-9. DOI
Friedland W, et al. Simulation of light ion induced DNA damage patterns. Radiat. Prot. Dosimetry. 2006;122:116–120. doi: 10.1093/rpd/ncl451. PubMed DOI
Kundrát P, Stewart RD. On the biophysical interpretation of lethal DNA lesions induced by ionising radiation. Radiat. Prot. Dosimetry. 2006;122:169–172. doi: 10.1093/rpd/ncl439. PubMed DOI
Track Structure-Based Simulations on DNA Damage Induced by Diverse Isotopes