Ultrasensitive detection of BRAF mutations in circulating tumor DNA of non-metastatic melanoma
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P30 CA016672
NCI NIH HHS - United States
UL1 TR000371
NCATS NIH HHS - United States
PubMed
34942440
PubMed Central
PMC8695283
DOI
10.1016/j.esmoop.2021.100357
PII: S2059-7029(21)00319-7
Knihovny.cz E-resources
- Keywords
- circulating tumor DNA, liquid biopsy, melanoma,
- MeSH
- Circulating Tumor DNA * genetics MeSH
- Humans MeSH
- Melanoma * genetics MeSH
- Mutation * MeSH
- Polymerase Chain Reaction MeSH
- Proto-Oncogene Proteins B-raf * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- BRAF protein, human MeSH Browser
- Circulating Tumor DNA * MeSH
- Proto-Oncogene Proteins B-raf * MeSH
BACKGROUND: Implementation of adjuvant therapies in non-metastatic melanoma improved treatment outcomes in some patients; however, adjuvant therapy can be associated with significant cost and risk of toxicity. Therefore, there is an unmet need to better identify patients at high risk of recurrence. PATIENTS AND METHODS: We carried out an ultrasensitive droplet digital PCR (ddPCR)-based detection of BRAFV600E-mutated circulating tumor DNA (ctDNA) from blood samples prospectively collected before surgery, 1 hour after surgery, and then serially during follow-up. RESULTS: In 80 patients (stages ≤III), BRAFV600E mutations were detected in 47.2% of tissue, in 37.7% of ctDNA samples collected before surgery, and in 25.9% of ctDNA samples collected 1 hour after surgery. Patients with detected ctDNA in blood collected 1 hour after surgery compared to patients without detected ctDNA had higher likelihood of melanoma recurrence (P < 0.001) and shorter median disease-free survival (P = 0.001) and overall survival (P = 0.003). CONCLUSIONS: Ultrasensitive ddPCR can detect ctDNA in pre- and post-surgical blood samples from patients with resectable melanoma. Detection of ctDNA in post-surgical samples is associated with inferior treatment outcomes.
Department of Dermatovenerology University Hospital Pilsen Pilsen Czech Republic
Department of Pathology University Hospital Pilsen Pilsen Czech Republic
Department of Plastic Surgery University Hospital Pilsen Pilsen Czech Republic
See more in PubMed
Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. PubMed
Von Schuckmann L.A., Hughes M.C.B., Ghiasvand R., et al. Risk of melanoma recurrence after diagnosis of a high-risk primary tumor. JAMA Dermatol. 2019;155(6):688–693. PubMed PMC
Eggermont A.M.M., Blank C.U., Mandala M., et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–1801. PubMed
Weber J., Mandala M., Del Vecchio M., et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–1835. PubMed
Long G.V., Hauschild A., Santinami M., et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med. 2017;377(19):1813–1823. PubMed
Hodis E., Watson I.R., Kryukov G.V., et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–263. PubMed PMC
Bettegowda C., Sausen M., Leary R.J., et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. PubMed PMC
Amin M.B., Edge S.B., Greene F.L., et al., editors. AJCC Cancer Staging Manual. 8th ed. Springer International Publishing; New York City, NY: 2016.
Che G., Huang B., Xie Z., et al. Trends in incidence and survival in patients with melanoma, 1974-2013. Am J Cancer Res. 2019;9(7):1396–1414. PubMed PMC
Ossio R., Roldán-Marín R., Martínez-Said H., Adams D.J., Robles-Espinoza C.D. Melanoma: a global perspective. Nat Rev Cancer. 2017;17(7):393–394. PubMed
Garbe C., Keim U., Eigentler T.K., et al. Time trends in incidence and mortality of cutaneous melanoma in Germany. J Eur Acad Dermatol Venereol. 2019;33(7):1272–1280. PubMed
Dawson S.-J., Tsui D.W.Y., Murtaza M., et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199–1209. PubMed
Hodi F.S., O'Day S.J., McDermott D.F., et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723. PubMed PMC
Tan L., Sandhu S., Lee R.J., et al. Prediction and monitoring of relapse in stage III melanoma using circulating tumor DNA. Ann Oncol. 2019;30(5):804–814. PubMed PMC
Huang R.S.P., Xiao J., Pavlick D.C., et al. Circulating cell-free DNA yield and circulating-tumor DNA quantity from liquid biopsies of 12 139 cancer patients. Clin Chem. 2021;67:1554–1566. PubMed
Chen K., Zhao H., Shi Y., et al. Perioperative dynamic changes in circulating tumor DNA in patients with lung cancer (DYNAMIC) Clin Cancer Res. 2019;25(23):7058–7067. PubMed
Xi L., Pham T.H.T., Payabyab E.C., Sherry R.M., Rosenberg S.A., Raffeld M. Circulating tumor DNA as an early indicator of response to T-cell transfer immunotherapy in metastatic melanoma. Clin Cancer Res. 2016;22(22):5480–5486. PubMed PMC
Forthun R.B., Hovland R., Schuster C., et al. ctDNA detected by ddPCR reveals changes in tumour load in metastatic malignant melanoma treated with bevacizumab. Sci Rep. 2019;9(1):17471. PubMed PMC
Lee J.H., Long G.V., Menzies A.M., et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti–programmed cell death 1 antibodies. JAMA Oncol. 2018;4(5):717–721. PubMed PMC
Gray E.S., Rizos H., Reid A.L., et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget. 2015;6(39):42008–42018. PubMed PMC
McEvoy A.C., Warburton L., Al-Ogaili Z., et al. Correlation between circulating tumour DNA and metabolic tumour burden in metastatic melanoma patients. BMC Cancer. 2018;18(1):726. PubMed PMC
Seremet T., Jansen Y., Planken S., et al. Undetectable circulating tumor DNA (ctDNA) levels correlate with favorable outcome in metastatic melanoma patients treated with anti-PD1 therapy. J Transl Med. 2019;17(1):303. PubMed PMC
Santiago-Walker A., Gagnon R., Mazumdar J., et al. Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials. Clin Cancer Res. 2016;22(3):567–574. PubMed
Lee J.H., Long G.V., Boyd S., et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol. 2017;28(5):1130–1136. PubMed
Michielin O., van Akkooi A.C.J., Ascierto P.A., Dummer R., Keilholz U., ESMO Guidelines Committee Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1884–1901. PubMed
Parikh A.R., Van Seventer E.E., Siravegna G., et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin Cancer Res. 2021;27(20):5586–5594. PubMed PMC
Kasi P.M., Le A.D., Barrett A. Comparative landscape of actionable somatic alterations in advanced cholangiocarcinoma from circulating tumor and tissue-based DNA profiling. J Clin Oncol. 2021;39(3_suppl):342.
Mack P., Minichielle K., Redman M., et al. LUNGMAP Master Protocol (LUNGMAP): concordance between plasma ctDNA and tissue molecular analysis. J Thorac Oncol. 2021;16(3):S163–S164.
Gerlinger M., Rowan A.J., Horswell S., et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–892. PubMed PMC