Mitochondrial Respiration of Platelets: Comparison of Isolation Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CA15203
European Cooperation in Science and Technology
No. 859770, NextGen-O2k project
European Union's Horizon 2020 research and innovation programme under grant agreement
UHHK, 00179906
Project SVV 260 548, the University Hospital in Hradec Kralove MH CZ - DRO
PubMed
34944675
PubMed Central
PMC8698846
DOI
10.3390/biomedicines9121859
PII: biomedicines9121859
Knihovny.cz E-zdroje
- Klíčová slova
- density gradient centrifugation, flow cytometry, high-resolution respirometry, human platelets, mitochondria, oxidative phosphorylation, platelet apheresis, thrombocytes,
- Publikační typ
- časopisecké články MeSH
Multiple non-aggregatory functions of human platelets (PLT) are widely acknowledged, yet their functional examination is limited mainly due to a lack of standardized isolation and analytic methods. Platelet apheresis (PA) is an established clinical method for PLT isolation aiming at the treatment of bleeding diathesis in severe thrombocytopenia. On the other hand, density gradient centrifugation (DC) is an isolation method applied in research for the analysis of the mitochondrial metabolic profile of oxidative phosphorylation (OXPHOS) in PLT obtained from small samples of human blood. We studied PLT obtained from 29 healthy donors by high-resolution respirometry for comparison of PA and DC isolates. ROUTINE respiration and electron transfer capacity of living PLT isolated by PA were significantly higher than in the DC group, whereas plasma membrane permeabilization resulted in a 57% decrease of succinate oxidation in PA compared to DC. These differences were eliminated after washing the PA platelets with phosphate buffer containing 10 mmol·L-1 ethylene glycol-bis (2-aminoethyl ether)-N,N,N',N'-tetra-acetic acid, suggesting that several components, particularly Ca2+ and fuel substrates, were carried over into the respiratory assay from the serum in PA. A simple washing step was sufficient to enable functional mitochondrial analysis in subsamples obtained from PA. The combination of the standard clinical PA isolation procedure with PLT quality control and routine mitochondrial OXPHOS diagnostics meets an acute clinical demand in biomedical research of patients suffering from thrombocytopenia and metabolic diseases.
Zobrazit více v PubMed
Laki K. Our Ancient Heritage in Blood Clotting and Some of Its Consequences. Ann. N. Y. Acad. Sci. 1972;202:297–307. doi: 10.1111/j.1749-6632.1972.tb16342.x. PubMed DOI
Brand M.D., Nicholls D.G. Assessing Mitochondrial Dysfunction in Cells. Biochem. J. 2011;435:297–312. doi: 10.1042/BJ20110162. PubMed DOI PMC
Gnaiger E. Mitochondrial Pathways and Respiratory Control: An Introduction to OXPHOS Analysis. Bioenerg. Commun. 2020;2020:112. doi: 10.26124/BEC:2020-0002. DOI
Gnaiger E., Steinlechner-Maran R., Méndez G., Eberl T., Margreiter R. Control of Mitochondrial and Cellular Respiration by Oxygen. J. Bioenerg. Biomembr. 1995;27:583–596. doi: 10.1007/BF02111656. PubMed DOI
Sumbalova Z., Garcia-Souza L.F., Calabria E., Volani C., Gnaiger E. O2k-Protocols: Isolation of Peripheral Blood Mononuclear Cells and Platelets from Human Blood for HRFR. [(accessed on 14 October 2021)];Mitochondr. Physiol. Netw. 2020 21:1–15. Available online: https://wiki.oroboros.at/index.php/MiPNet21.17_BloodCellsIsolation.
Villar-Vesga J., Grajales C., Burbano C., Vanegas–García A., Muñoz–Vahos C.H., Vásquez G., Rojas M., Castaño D. Platelet-Derived Microparticles Generated in Vitro Resemble Circulating Vesicles of Patients with Rheumatoid Arthritis and Activate Monocytes. Cell. Immunol. 2019;336:1–11. doi: 10.1016/j.cellimm.2018.12.002. PubMed DOI
Ferguson M.A., Sutton R.M., Karlsson M., Sjövall F., Becker L.B., Berg R.A., Margulies S.S., Kilbaugh T.J. Increased Platelet Mitochondrial Respiration after Cardiac Arrest and Resuscitation as a Potential Peripheral Biosignature of Cerebral Bioenergetic Dysfunction. J. Bioenerg. Biomembr. 2016;48:269–279. doi: 10.1007/s10863-016-9657-9. PubMed DOI
Puskarich M.A., Kline J.A., Watts J.A., Shirey K., Hosler J., Jones A.E. Early Alterations in Platelet Mitochondrial Function Are Associated with Survival and Organ Failure in Patients with Septic Shock. J. Crit. Care. 2016;31:63–67. doi: 10.1016/j.jcrc.2015.10.005. PubMed DOI PMC
Hoppel F., Calabria E., Pesta D.H., Kantner-Rumplmair W., Gnaiger E., Burtscher M. Effects of Ultramarathon Running on Mitochondrial Function of Platelets and Oxidative Stress Parameters: A Pilot Study. Front. Physiol. 2021;12:632664. doi: 10.3389/fphys.2021.632664. PubMed DOI PMC
Gvozdjakova A., Sumbalova Z., Kucharska J., Komlosi M., Rausova Z., Vancova O., Szamosova M., Mojto V. Platelet Mitochondrial Respiration, Endogenous Coenzyme Q10 and Oxidative Stress in Patients with Chronic Kidney Disease. Diagnostics. 2020;10:176. doi: 10.3390/diagnostics10030176. PubMed DOI PMC
Gvozdjakova A., Sumbalova Z., Kucharska J., Chladekova A., Rausova Z., Vancova O., Komlosi M., Ulicna O., Mojto V. Platelet Mitochondrial Bioenergetic Analysis in Patients with Nephropathies and Non-Communicable Diseases: A New Method. Bratisl. Med. J. 2019;120:630–635. doi: 10.4149/BLL_2019_104. PubMed DOI
Avila C., Huang R., Stevens M., Aponte A., Tripodi D., Kim K., Sack M. Platelet Mitochondrial Dysfunction Is Evident in Type 2 Diabetes in Association with Modifications of Mitochondrial Anti-Oxidant Stress Proteins. Exp. Clin. Endocrinol. Diabetes. 2012;120:248–251. doi: 10.1055/s-0031-1285833. PubMed DOI PMC
Zharikov S., Shiva S. Platelet Mitochondrial Function: From Regulation of Thrombosis to Biomarker of Disease. Biochem. Soc. Trans. 2013;41:118–123. doi: 10.1042/BST20120327. PubMed DOI
Merlo Pich M., Bovina C., Formiggini G., Cometti G.G., Ghelli A., Parenti Castelli G., Genova M.L., Marchetti M., Semeraro S., Lenaz G. Inhibitor Sensitivity of Respiratory Complex I in Human Platelets: A Possible Biomarker of Ageing. FEBS Lett. 1996;380:176–178. doi: 10.1016/0014-5793(96)00037-3. PubMed DOI
Braganza A., Corey C.G., Santanasto A.J., Distefano G., Coen P.M., Glynn N.W., Nouraie S.-M., Goodpaster B.H., Newman A.B., Shiva S. Platelet Bioenergetics Correlate with Muscle Energetics and Are Altered in Older Adults. JCI Insight. 2019;4:e128248. doi: 10.1172/jci.insight.128248. PubMed DOI PMC
Xu W., Cardenes N., Corey C., Erzurum S.C., Shiva S. Platelets from Asthmatic Individuals Show Less Reliance on Glycolysis. PLoS ONE. 2015;10:e0132007. doi: 10.1371/journal.pone.0132007. PubMed DOI PMC
Sjövall F., Morota S., Åsander Frostner E., Hansson M.J., Elmér E. Cytokine and Nitric Oxide Levels in Patients with Sepsis–Temporal Evolvement and Relation to Platelet Mitochondrial Respiratory Function. PLoS ONE. 2014;9:e97673. doi: 10.1371/journal.pone.0097673. PubMed DOI PMC
Protti A., Fortunato F., Artoni A., Lecchi A., Motta G., Mistraletti G., Novembrino C., Comi G., Gattinoni L. Platelet Mitochondrial Dysfunction in Critically Ill Patients: Comparison between Sepsis and Cardiogenic Shock. Crit. Care. 2015;19:39. doi: 10.1186/s13054-015-0762-7. PubMed DOI PMC
Sjövall F., Morota S., Hansson M.J., Friberg H., Gnaiger E., Elmér E. Temporal Increase of Platelet Mitochondrial Respiration Is Negatively Associated with Clinical Outcome in Patients with Sepsis. Crit. Care. 2010;14:R214. doi: 10.1186/cc9337. PubMed DOI PMC
Lorente L., Martín M.M., López-Gallardo E., Blanquer J., Solé-Violán J., Labarta L., Díaz C., Jiménez A., Montoya J., Ruiz-Pesini E. Decrease of Oxidative Phosphorylation System Function in Severe Septic Patients. J. Crit. Care. 2015;30:935–939. doi: 10.1016/j.jcrc.2015.05.031. PubMed DOI
Fišar Z., Jirák R., Zvěřová M., Setnička V., Habartová L., Hroudová J., Vaníčková Z., Raboch J. Plasma Amyloid Beta Levels and Platelet Mitochondrial Respiration in Patients with Alzheimer’s Disease. Clin. Biochem. 2019;72:71–80. doi: 10.1016/j.clinbiochem.2019.04.003. PubMed DOI
Magron A., Laugier J., Provost P., Boilard E. Pathogen Reduction Technologies: The Pros and Cons for Platelet Transfusion. Platelets. 2018;29:2–8. doi: 10.1080/09537104.2017.1306046. PubMed DOI
Yasui K., Matsuyama N., Kuroishi A., Tani Y., Furuta R.A., Hirayama F. Mitochondrial Damage-Associated Molecular Patterns as Potential Proinflammatory Mediators in Post-Platelet Transfusion Adverse Effects: Innate Immune Cell Activation by Mitochondrial DAMPs. Transfusion (Paris) 2016;56:1201–1212. doi: 10.1111/trf.13535. PubMed DOI
Perales Villarroel J.P., Figueredo R., Guan Y., Tomaiuolo M., Karamercan M.A., Welsh J., Selak M.A., Becker L.B., Sims C. Increased Platelet Storage Time Is Associated with Mitochondrial Dysfunction and Impaired Platelet Function. J. Surg. Res. 2013;184:422–429. doi: 10.1016/j.jss.2013.05.097. PubMed DOI PMC
Bynum J.A., Adam Meledeo M., Getz T.M., Rodriguez A.C., Aden J.K., Cap A.P., Pidcoke H.F. Bioenergetic Profiling of Platelet Mitochondria during Storage: 4 °C Storage Extends Platelet Mitochondrial Function and Viability. Transfusion (Paris) 2016;56:S76–S84. doi: 10.1111/trf.13337. PubMed DOI
Ekaney M.L., Grable M.A., Powers W.F., McKillop I.H., Evans S.L. Cytochrome c and Resveratrol Preserve Platelet Function during Cold Storage. J. Trauma Acute Care Surg. 2017;83:271–277. doi: 10.1097/TA.0000000000001547. PubMed DOI
Chacko B.K., Kramer P.A., Ravi S., Johnson M.S., Hardy R.W., Ballinger S.W., Darley-Usmar V.M. Methods for Defining Distinct Bioenergetic Profiles in Platelets, Lymphocytes, Monocytes, and Neutrophils, and the Oxidative Burst from Human Blood. Lab. Investig. 2013;93:690–700. doi: 10.1038/labinvest.2013.53. PubMed DOI PMC
Renner K., Geiselhöringer A.-L., Fante M., Bruss C., Färber S., Schönhammer G., Peter K., Singer K., Andreesen R., Hoffmann P., et al. Metabolic Plasticity of Human T Cells: Preserved Cytokine Production under Glucose Deprivation or Mitochondrial Restriction, but 2-Deoxy-Glucose Affects Effector Functions: Cellular Immune Response. Eur. J. Immunol. 2015;45:2504–2516. doi: 10.1002/eji.201545473. PubMed DOI
European Committee on Blood Transfusion (Council of Europe, Strasbourg, France) Good Practise Guidelines for Blood Establishment Required to Comply with Directive 2005/62/EC. [(accessed on 12 October 2021)]. Available online: https://www.edqm.eu/sites/default/files/medias/fichiers/Blood/good_practices_guidelines_for_blood_establisments-blood_guide_20th_may_2020.pdf.
Gnaiger E., Kuznetsov A.V., Schneeberger S., Seiler R., Brandacher G., Steurer W., Margreiter R. Mitochondria in the Cold. In: Heldmaier G., Klingenspor M., editors. Life in the Cold. Springer; Berlin/Heidelberg, Germany: 2000. pp. 431–432. DOI
Sjövall F., Ehinger J.K.H., Marelsson S.E., Morota S., Åsander Frostner E., Uchino H., Lundgren J., Arnbjörnsson E., Hansson M.J., Fellman V., et al. Mitochondrial Respiration in Human Viable Platelets—Methodology and Influence of Gender, Age and Storage. Mitochondrion. 2013;13:7–14. doi: 10.1016/j.mito.2012.11.001. PubMed DOI
SUIT-003 O2 ce-pce D020. [(accessed on 12 October 2021)]. Available online: https://wiki.oroboros.at/index.php/SUIT-003_O2_ce-pce_D020.
Stadlmann S., Renner K., Pollheimer J., Moser P.L., Zeimet A.G., Offner F.A., Gnaiger E. Preserved Coupling of Oxidative Phosphorylation but Decreased Mitochondrial Respiratory Capacity in IL-1β-Treated Human Peritoneal Mesothelial Cells. Cell Biochem. Biophys. 2006;44:179–186. doi: 10.1385/CBB:44:2:179. PubMed DOI
Doerrier C., Garcia-Souza L.F., Krumschnabel G., Wohlfarter Y., Mészáros A.T., Gnaiger E. High-Resolution Fluorespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. In: Palmeira C.M., Moreno A.J., editors. Mitochondrial Bioenergetics. Volume 1782. Springer; New York, NY, USA: 2018. pp. 31–70. Methods in Molecular Biology. PubMed
Gnaiger E., Aasander Frostner E., Abdul Karim N., Abdel-Rahman E.A., Abumrad N.A., Acuna-Castroviejo D., Adiele R.C., Ahn B., Alencar M., Ali S.S., et al. MitoEAGLE Task Group. Mitochondrial Physiology. Bioenerg. Commun. 2020;2020:1–44. doi: 10.26124/BEC:2020-0001.v1. DOI
Hvas A.-M., Favaloro E.J. Platelet Function Analyzed by Light Transmission Aggregometry. In: Favaloro E.J., Lippi G., editors. Hemostasis and Thrombosis. Volume 1646. Springer; New York, NY, USA: 2017. pp. 321–331. Methods in Molecular Biology. PubMed
Neunert C., Terrell D.R., Arnold D.M., Buchanan G., Cines D.B., Cooper N., Cuker A., Despotovic J.M., George J.N., Grace R.F., et al. American Society of Hematology 2019 Guidelines for Immune Thrombocytopenia. Blood Adv. 2019;3:3829–3866. doi: 10.1182/bloodadvances.2019000966. PubMed DOI PMC
Wang L., Wu Q., Fan Z., Xie R., Wang Z., Lu Y. Platelet Mitochondrial Dysfunction and the Correlation with Human Diseases. Biochem. Soc. Trans. 2017;45:1213–1223. doi: 10.1042/BST20170291. PubMed DOI
McCann M.R., McHugh C.E., Kirby M., Jennaro T.S., Jones A.E., Stringer K.A., Puskarich M.A. A Multivariate Metabolomics Method for Estimating Platelet Mitochondrial Oxygen Consumption Rates in Patients with Sepsis. Metabolites. 2020;10:139. doi: 10.3390/metabo10040139. PubMed DOI PMC
Kline J.A., Puskarich M.A., Pike J.W., Zagorski J., Alves N.J. Inhaled Nitric Oxide to Control Platelet Hyper-Reactivity in Patients with Acute Submassive Pulmonary Embolism. Nitric Oxide. 2020;96:20–28. doi: 10.1016/j.niox.2020.01.004. PubMed DOI PMC
Hsu C.-C., Tsai H.-H., Fu T.-C., Wang J.-S. Exercise Training Enhances Platelet Mitochondrial Bioenergetics in Stroke Patients: A Randomized Controlled Trial. J. Clin. Med. 2019;8:2186. doi: 10.3390/jcm8122186. PubMed DOI PMC
Braganza A., Annarapu G.K., Shiva S. Blood-Based Bioenergetics: An Emerging Translational and Clinical Tool. Mol. Asp. Med. 2020;71:100835. doi: 10.1016/j.mam.2019.100835. PubMed DOI PMC
Siewiera K., Kassassir H., Talar M., Wieteska L., Watala C. Higher Mitochondrial Potential and Elevated Mitochondrial Respiration Are Associated with Excessive Activation of Blood Platelets in Diabetic Rats. Life Sci. 2016;148:293–304. doi: 10.1016/j.lfs.2016.02.030. PubMed DOI
Stadlmann S., Rieger G., Amberger A., Kuznetsov A.V., Margreiter R., Gnaiger E. H2O2-Mediated Oxidative Stress versus Cold Ischemia-Reperfusion: Mitochondrial Respiratory Defects in Cultured Human Endothelial Cells: Transplantation. Transplantation. 2002;74:1800–1803. doi: 10.1097/00007890-200212270-00029. PubMed DOI
Gnaiger E., Kuznetsov A.V., Rieger G., Amberger A., Fuchs A., Stadlmann S., Eberl T., Margreiter R. Mitochondrial Defects by Intracellular Calcium Overload versus Endothelial Cold Ischemia/Reperfusion Injury. Transpl. Int. 2000;13:S555–S557. doi: 10.1111/j.1432-2277.2000.tb02103.x. PubMed DOI
Siewiera K., Labieniec-Watala M., Wolska N., Kassassir H., Watala C. Sample Preparation as a Critical Aspect of Blood Platelet Mitochondrial Respiration Measurements—The Impact of Platelet Activation on Mitochondrial Respiration. Int. J. Mol. Sci. 2021;22:9332. doi: 10.3390/ijms22179332. PubMed DOI PMC
Holme S., Sweeney J., Sawyer S., Elfath M. The expression of p-selectin during collection, processing, and storage of platelet concentrates: Relationship to loss of in vivo viability. Transfusion. 1997;37:12–17. doi: 10.1046/j.1537-2995.1997.37197176945.x. PubMed DOI
Watala C., Golański J., Boncler M.A., Pietrucha T., Gwoździński K. Membrane lipid fluidity of blood platelets: A common denominator that underlies the opposing actions of various agents that affect platelet activation in whole blood. Platelets. 1998;9:315–327. doi: 10.1080/09537109876564. PubMed DOI
Gnaiger E. Bioenergetic cluster analysis—Mitochondrial respiratory control in human fibroblasts. MitoFit Prepr. 2021;2021:1–32. doi: 10.26124/mitofit:2021-0008. DOI