Assessment of the Genetic Diversity of a Local Pig Breed Using Pedigree and SNP Data
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34946921
PubMed Central
PMC8702119
DOI
10.3390/genes12121972
PII: genes12121972
Knihovny.cz E-zdroje
- Klíčová slova
- Přeštice Black-Pied pig, ROH, SNP, inbreeding, pedigree,
- MeSH
- frekvence genu genetika MeSH
- genetická variace genetika MeSH
- genomika metody MeSH
- genotyp MeSH
- homozygot MeSH
- hustota populace MeSH
- inbreeding metody MeSH
- jednonukleotidový polymorfismus genetika MeSH
- prasata genetika MeSH
- rodokmen MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Herein, the genetic diversity of the local Přeštice Black-Pied pig breed was assessed by the simultaneous analysis of the pedigree and single nucleotide polymorphism (SNP) data. The information about sire line, dam, date of birth, sex, breeding line, and herd for 1971 individuals was considered in the pedigree analysis. The SNP analysis (n = 181) was performed using the Illumina PorcineSNP60 BeadChip kit. The quality of pedigree and SNPs and the inbreeding coefficients (F) and effective population size (Ne) were evaluated. The correlations between inbreeding based on the runs of homozygosity (FROH) and pedigree (FPED) were also calculated. The average FPED for all animals was 3.44%, while the FROH varied from 10.81% for a minimum size of 1 Mbp to 3.98% for a minimum size of 16 Mbp. The average minor allele frequency was 0.28 ± 0.11. The observed and expected within breed heterozygosities were 0.38 ± 0.13 and 0.37 ± 0.12, respectively. The Ne, obtained using both the data sources, reached values around 50 animals. Moderate correlation coefficients (0.49-0.54) were observed between FPED and FROH. It is necessary to make decisions that stabilize the inbreeding rate in the long-term using optimal contribution selection based on the available SNP data.
Zobrazit více v PubMed
Fiedler J., Fiedlerová M., Smital J. Přeštické Černostrakaté Plemeno Prasat. 1st ed. VÚŽV; Praha, Czech Republic: 2004. p. 166.
Hodan J. Historie vzniku a průběh zvelebování chovu přeštického prasete. Pod Zelenou Horou Vlastivědný Sborník Jižního Plzeňska. 1998;1:13.
Vrtková I. Genetic Admixture Analysis in Prestice Black-Pied Pigs. Arch. Anim. Breed. 2015;58:115–121. doi: 10.5194/aab-58-115-2015. DOI
Vaclavková E., Rozkot M., Dostálová A. Přeštické Černostrakaté Prase. Živé Dědictví po Předcích (Přestice Black-Pied Pig—Living Heritage from Our Ancestors (Czech Language) 1st ed. VÚŽV; Praha, Czech Republic: 2012. p. 70.
Wolf J., Horáčková Š., Wolfová M. Genetic Parameters for the Black Pied Přeštice Breed: Comparison of Different Multi-Trait Animal Models. Czech J. Anim. Sci. 2001;46:165–171.
Matoušek V., Kernerová N., Hyšplerová K., Komosný M. Performance Traits of Prestice Black-Pied Pig Breed at the Effect of Genealogical Line. Res. Pig Breed. 2016;10:10–15.
FAO . The State of the World’s Biodiversity for Food and Agriculture. Food and Agriculture Organization; Rome, Italy: 2019.
Muñoz M., Bozzi R., García-Casco J., Núñez Y., Ribani A., Franci O., García F., Škrlep M., Schiavo G., Bovo S., et al. Genomic Diversity, Linkage Disequilibrium and Selection Signatures in European Local Pig Breeds Assessed with a High Density SNP Chip. Sci. Rep. 2019;9:13546. doi: 10.1038/s41598-019-49830-6. PubMed DOI PMC
Krupa E., Krupová Z., Žáková E., Kasarda R., Svitáková A. Population Analysis of the Local Endangered Přeštice Black-Pied Pig Breed. Poljoprivreda. 2015;21:155–158. doi: 10.18047/poljo.21.1.sup.36. DOI
Wright S. Coefficients of Inbreeding and Relationship. Am. Nat. 1922;56:330–338. doi: 10.1086/279872. DOI
Meuwissen T.H.E., Luo Z. Computing in Breeding Coefficients in Large Populations. Genet. Sel. Evol. 1992;24:305–313. doi: 10.1186/1297-9686-24-4-305. DOI
Falconer D.S., Mackay T.F.C. Introduction to Quantitative Genetics. 4th ed. Longman Scientific and Technical; Harlow, UK: 1996. p. 448.
Colleau J.J. An Indirect Approach to the Extensive Calculation of Relationship Coefficients. Genet. Sel. Evol. 2002;34:409–421. doi: 10.1186/1297-9686-34-4-409. PubMed DOI PMC
Maccluer J.W., Boyce A.J., Dyke B., Weitkamp L.R., Pfenning D.W., Parsons C.J. Inbreeding and Pedigree Structure in Standardbred Horses. J. Hered. 1983;74:394–399. doi: 10.1093/oxfordjournals.jhered.a109824. DOI
Sørensen A.C., Sørensen M.K., Berg P. Inbreeding in Danish Dairy Cattle Breeds. J. Dairy Sci. 2005;88:1865–1872. doi: 10.3168/jds.S0022-0302(05)72861-7. PubMed DOI
Krupa E., Žáková E., Krupová Z. Evaluation of Inbreeding and Genetic Variability of Five Pig Breeds in Czech Republic. Asian-Australas. J. Anim. Sci. 2015;28:25–36. doi: 10.5713/ajas.14.0251. PubMed DOI PMC
Pérez-Enciso M. Use of the Uncertain Relationship Matrix to Compute Effective Population Size. J. Anim. Breed. Genet. 1995;112:327–332. doi: 10.1111/j.1439-0388.1995.tb00574.x. DOI
Gutiérrez J.P., Cervantes I., Goyache F. Improving the Estimation of Realized Effective Population Sizes in Farm Animals. J. Anim. Breed. Genet. 2009;126:327–332. doi: 10.1111/j.1439-0388.2009.00810.x. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 5 October 2021)]. Available online: https://www.R-project.org.
Groeneveld E., Van der Westhuizen B., Maiwashe A., Voordewind F., Ferraz J.B.S. POPREP: A Generic Report for Population Management. Genet. Mol. Res. 2009;8:1158–1178. doi: 10.4238/vol8-3gmr648. PubMed DOI
Sargolzaei M., Iwaisaki H., Colleau J.J. CFC: A Tool for Monitoring Genetic Diversity; Proceedings of the 8th World Congress on Genetics Applied to Livestock Production (WCGALP); Belo Horizonte, Brazil. 13–18 August 2006; pp. 27–28.
Boichard D. PEDIG: A Fortran Package for Pedigree Analysis Suited for Large Populations; Proceedings of the 7th World Congress on Genetics Applied to Livestock Production (WCGALP); Montpellier, France. 19–23 August 2002; Castanet-Tolosan, France: INRA; 2002. pp. 19–23.
Gutiérrez J.P., Goyache F. A Note on ENDOG: A Computer Program for Analysing Pedigree Information. J. Anim. Breed. Genet. 2005;122:172–176. doi: 10.1111/j.1439-0388.2005.00512.x. PubMed DOI
Chang C.C., Chow C.C., Tellier L.C.A.M., Vattikuti S., Purcell S.M., Lee J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. GigaScience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Lencz T., Lambert C., DeRosse P., Burdick K.E., Morgan T.V., Kane J.M., Kucherlapati R., Malhotra A.K. Runs of Homozygosity Reveal Highly Penetrant Recessive Loci in Schizophrenia. Proc. Natl. Acad. Sci. USA. 2007;104:19942–19947. doi: 10.1073/pnas.0710021104. PubMed DOI PMC
Marras G., Gaspa G., Sorbolini S., Dimauro C., Ajmone-Marsan P., Valentini A., Williams J.L., Macciotta N.P. Analysis of Runs of Homozygosity and Their Relationship with Inbreeding in Five Cattle Breeds Farmed in Italy. Anim. Genet. 2015;46:110–121. doi: 10.1111/age.12259. PubMed DOI
Ferenčakovič M., Hamzíc E., Gredler B., Solberg T.R., Klemetsdal G., Curik I., Sölkner J. Estimates of Autozygosity Derived from Runs of Homozygosity: Empirical Evidence from Selected Cattle Populations. J. Anim. Breed. Genet. 2013;130:286–293. doi: 10.1111/jbg.12012. PubMed DOI
Ferenčakovič M., Sölkner J., Curik I. Estimating Autozygosity from High-Throughput Information: Effects of SNP Density and Genotyping Errors. Genet. Sel. Evol. 2013;45:42. doi: 10.1186/1297-9686-45-42. PubMed DOI PMC
Schiavo G., Bovo S., Bertolini F., Tinarelli S., Dall’Olio S., Nanni Costa L., Gallo M., Fontanesi L. Comparative Evaluation of Genomic Inbreeding Parameters in Seven Commercial and Autochthonous Pig Breeds. Animal. 2020;14:910–920. doi: 10.1017/S175173111900332X. PubMed DOI
Santiago E., Novo I., Pardiñas A.F., Saura M., Wang J., Caballero A. Recent Demographic History Inferred by High-Resolution Analysis of Linkage Disequilibrium. Mol. Biol. Evol. 2020;37:3642–3653. doi: 10.1093/molbev/msaa169. PubMed DOI
Mitchell M. An Introduction to Genetic Algorithms. MIT Press; Cambridge, UK: 1998.
Pembleton L.W., Cogan N.O.I., Forster J.W. StAMPP: An R Package for Calculation of Genetic Differentiation and Structure of Mixed-Ploidy Level Populations. Mol. Ecol. Resour. 2013;13:946–952. doi: 10.1111/1755-0998.12129. PubMed DOI
Melka M.G., Schenkel F. Analysis of Genetic Diversity in Four Canadian Swine Breeds Using Pedigree Data. Can. J. Anim. Sci. 2010;90:331–340. doi: 10.4141/CJAS10002. DOI
Tang G.Q., Xue J., Lian M.J., Yang R.F., Liu T.F., Zeng Z.Y., Jiang A.A., Jiang Y.Z., Zhu L., Bai L., et al. Inbreeding and Genetic Diversity in Three Imported Swine Breeds in china Using Pedigree Data. Asian-Australas. J. Anim. Sci. 2013;26:755–765. doi: 10.5713/ajas.2012.12645. PubMed DOI PMC
Veroneze R., Lopes P.S., Guimarães S.E.F., Guimarães J.D., Costa E.V., Faria V.R., Costa K.A. Using Pedigree Analysis to Monitor the Local Piau Pig Breed Conservation Program. Arch. Zootec. 2014;63:45–54. doi: 10.4321/S0004-05922014000100005. DOI
Mariani E., Summer A., Ablondi M., Sabbioni A. Genetic Variability and Management in Nero di Parma Swine Breed to Preserve Local Diversity. Animals. 2020;10:538. doi: 10.3390/ani10030538. PubMed DOI PMC
Saura M., Fernández A., Varona L., Fernández A.I., de Cara M.Á., Barragán C., Villanueva B. Detecting Inbreeding Depression for Reproductive Traits in Iberian Pigs Using Genome-Wide Data. Genet. Sel. Evol. 2015;47:1. doi: 10.1186/s12711-014-0081-5. PubMed DOI PMC
Toro M.A., Rodrigañez J., Silio L., Rodriguez C. Genealogical Analysis of a Closed Herd of Black Hairless Iberian Pigs. Conserv. Biol. 2008;14:1843–1851. doi: 10.1111/j.1523-1739.2000.99322.x. PubMed DOI
Köck A., Fürst-Waltl B., Baumung R. Effects of Inbreeding on Number of Piglets Born Total, Born Alive and Weaned in Austrian Large White and Landrace Pigs. Arch. Anim. Breed. 2009;52:51–64. doi: 10.5194/aab-52-51-2009. DOI
Silió L., Rodríguez M.C., Fernández A., Barragán C., Benítez R., Óvilo C., Fernández A.I. Measuring Inbreeding and Inbreeding Depression on Pig Growth from Pedigree or SNP-Derived Metrics. J. Anim. Breed. Genet. 2013;130:349–360. doi: 10.1111/jbg.12031. PubMed DOI
Welsh C.S., Stewart T.S., Schwab C., Blackburn H.D. Pedigree Analysis of 5 Swine Breeds in the United States and the Implications for Genetic Conservation. J. Anim. Sci. 2010;88:1610–1618. doi: 10.2527/jas.2009-2537. PubMed DOI
Meuwissen T.H.E., Woolliams J.A. Effective Sizes of Livestock Populations to Prevent a Decline in Fitness. Theor. Appl. Genet. 1994;89:1019–1026. doi: 10.1007/BF00224533. PubMed DOI
Herrero-Medrano J.M., Megens H.J., Groenen M.A., Ramis G., Bosse M., Pérez-Enciso M., Crooijmans R.P.M.A. Conservation Genomic Analysis of Domestic and Wild Pig Populations from the Iberian Peninsula. BMC Genet. 2013;14:106. doi: 10.1186/1471-2156-14-106. PubMed DOI PMC
Hlongwane N.L., Hadebe K., Soma P., Dzomba E.F., Muchadeyi F.C. Genome Wide Assessment of Genetic Variation and Population Distinctiveness of the Pig Family in South Africa. Front. Genet. 2020;11:344. doi: 10.3389/fgene.2020.00344. PubMed DOI PMC
Laval G., Iannuccelli N., Legault C., Milan D., Groenen M.A., Giuffra E., Andersson L., Nissen P.H., Jørgensen C.B., Beeckmann P., et al. Genetic Diversity of Eleven European Pig Breeds. Genet. Sel. Evol. 2000;32:187–203. doi: 10.1186/1297-9686-32-2-187. PubMed DOI PMC
Blackburn H., Faria D.A., Wilson C., Paiva S.R. P4066 Genetic Diversity of Pig Populations from the US Mainland, Pacific Islands and China: Autosomal SNP Evaluation. J. Anim. Sci. 2016;94:112. doi: 10.2527/jas2016.94supplement4112x. DOI
Zanella R., Peixoto J.O., Cardoso F.F., Cardoso L.L., Biegelmeyer P., Cantão M.E., Otaviano A., Freitas M.S., Caetano A.R., Ledur M.C. Genetic Diversity Analysis of Two Commercial Breeds of Pigs Using Genomic and Pedigree Data. Genet. Sel. Evol. 2016;48:24. doi: 10.1186/s12711-016-0203-3. PubMed DOI PMC
Daetwyler H.D., Villanueva B., Bijma P., Woolliams J.A. Inbreeding in Genome-wide Selection. J. Anim. Breed. Genet. 2007;124:369–376. doi: 10.1111/j.1439-0388.2007.00693.x. PubMed DOI