Utilisation of Carp Skin Post-Production Waste in Binary Films Based on Furcellaran and Chitosan to Obtain Packaging Materials for Storing Blueberries
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LIDER/2/0004/L-10/18/NCBR/2019
National Centre for Research and Development
PubMed
34947442
PubMed Central
PMC8704361
DOI
10.3390/ma14247848
PII: ma14247848
Knihovny.cz E-zdroje
- Klíčová slova
- biopolymer films, chitosan, furcellaran, gelatin hydrolysate,
- Publikační typ
- časopisecké články MeSH
The aim of the study was to develop and characterise an innovative three-component biopolymer film based on chitosan (CHIT), furcellaran (FUR) and a gelatin hydrolysate from carp skins (Cyprinus carpio) (HGEL). The structure and morphology were characterised using the Fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy (AFM). The FT-IR test showed no changes in the matrix after the addition of HGEL, which indicates that the film components were compatible. Based on the obtained AFM results, it was found that the addition of HGEL caused the formation of grooves and cracks on the surface of the film (reduction by ~21%). The addition of HGEL improved the antioxidant activity of the film (improvement by up to 2.318% and 444% of DPPH and FRAP power, respectively). Due to their properties, the tested films were used as active materials in the preservation of American blueberries. In the active films, the blueberries lost mass quickly compared to the synthetic film and were characterised by higher phenol content. The results obtained in this study create the opportunity to use the designed CHIT-FUR films in developing biodegradable packaging materials for food protection, but it is necessary to test their effectiveness on other food products.
Zobrazit více v PubMed
Ivonkovic A., Zeljko K., Talic S., Lasic M. Biodegradable packaging in the food industry. J. Food Saf. Food Qual. 2017;68:26–38.
Zhong Y., Godwin P., Jin Y., Xiao H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Ind. Eng. Polym. Res. 2019;3:27–35. doi: 10.1016/j.aiepr.2019.11.002. DOI
Luangapai F., Peanparkdee M., Iwamoto S. Biopolymer films for food industries: Properties, applications, and future aspects based on chitosan. Rev. Agric. Sci. 2019;7:59–67. doi: 10.7831/ras.7.0_59. DOI
Cazón P., Velazquez G., Ramírez J.A., Vázquez M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2016;68:136–148. doi: 10.1016/j.foodhyd.2016.09.009. DOI
Garavand F., Rouhi M., Razavi S.H., Cacciotti I., Mohammadi R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017;104:687–707. doi: 10.1016/j.ijbiomac.2017.06.093. PubMed DOI
Dharmalingam K., Anandalakshmi R. Polysaccharide-Based Films for Food Packaging Applications. In: Katiyar V., Gupta R., Ghosh T., editors. Advances in Sustainable Polymers: Processing and Applications. Springer Singapore; Singapore: 2019. 9p
Tang X.Z., Kumar P., Alavi S., Sandeep K.P. Recent Advances in Biopolymers and Biopolymer-Based Nanocomposites for Food Packaging Materials. Crit. Rev. Food Sci. Nutr. 2012;52:426–442. doi: 10.1080/10408398.2010.500508. PubMed DOI
Júnior L.M., Vieira R.P., Jamróz E., Anjos C.A.R. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr. Polym. 2021;252:117221. doi: 10.1016/j.carbpol.2020.117221. PubMed DOI
Imeson A.P. 7—Carrageenan and furcellaran. In: Phillips G.O., Williams P.A., editors. Handbook of Hydrocolloids. 2nd ed. Woodhead Publishing; Amsterdam, The Netherlands: 2009. pp. 164–185. DOI
Jamróz E., Juszczak L., Kucharek M. Development of starch-furcellaran-gelatin films containing tea tree essential oil. J. Appl. Polym. Sci. 2018;135 doi: 10.1002/app.46754. PubMed DOI
Hosseinnejad M., Jafari S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016;85:467–475. doi: 10.1016/j.ijbiomac.2016.01.022. PubMed DOI
Ahmad S.I., Ahmad R., Khan M.S., Kant R., Shahid S., Gautam L., Hasan G.M., Hassan I. Chitin and its derivatives: Structural properties and biomedical applications. Int. J. Biol. Macromol. 2020;164:526–539. doi: 10.1016/j.ijbiomac.2020.07.098. PubMed DOI
Wang H., Qian J., Ding F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018;66:395–413. doi: 10.1021/acs.jafc.7b04528. PubMed DOI
Feng X., Wang X., Xing W., Yu B., Song L., Hu Y. Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Chitosan and Their Synergistic Reinforcing Effects in PVA Films. Ind. Eng. Chem. Res. 2013;52:12906–12914. doi: 10.1021/ie402073x. DOI
Youssef A.M., Abou-Yousef H., El-Sayed S., Kamel S. Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int. J. Biol. Macromol. 2015;76:25–32. doi: 10.1016/j.ijbiomac.2015.02.016. PubMed DOI
Jiang Y., Yin H., Zhou X., Wang D., Zhong Y., Xia Q., Deng Y., Zhao Y. Antimicrobial, antioxidant and physical properties of chitosan film containing Akebia trifoliata (Thunb.) Koidz. peel extract/montmorillonite and its application. Food Chem. 2021;361:130111. doi: 10.1016/j.foodchem.2021.130111. PubMed DOI
Tkaczewska J., Bukowski M., Mak P. Identification of Antioxidant Peptides in Enzymatic Hydrolysates of Carp (Cyprinus Carpio) Skin Gelatin. Molecules. 2018;24:97. doi: 10.3390/molecules24010097. PubMed DOI PMC
Tkaczewska J., Morawska M., Kulawik P., Zając M. Characterization of carp (Cyprinus carpio) skin gelatin extracted using different pretreatments method. Food Hydrocoll. 2018;81:169–179. doi: 10.1016/j.foodhyd.2018.02.048. DOI
Jancikova S., Jamróz E., Kulawik P., Tkaczewska J., Dordevic D. Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials. Int. J. Biol. Macromol. 2019;131:19–28. doi: 10.1016/j.ijbiomac.2019.03.050. PubMed DOI
Jamróz E., Janik M., Juszczak L., Kruk T., Kulawik P., Szuwarzyński M., Kawecka A., Khachatryan K. Composite biopolymer films based on a polyelectrolyte complex of furcellaran and chitosan. Carbohydr. Polym. 2021;274:118627. doi: 10.1016/j.carbpol.2021.118627. PubMed DOI
Tkaczewska J., Jamróz E., Kulawik P., Morawska M., Szczurowska K. Evaluation of the potential use of a carp (Cyprinus carpio) skin gelatine hydrolysate as an antioxidant component. Food Funct. 2019;10:1038–1048. doi: 10.1039/C8FO02492H. PubMed DOI
Katırcı N., Işık N., Güpür Ç., Guler H.O., Gursoy O., Yilmaz Y. Differences in antioxidant activity, total phenolic and flavonoid contents of commercial and homemade tomato pastes. J. Saudi Soc. Agric. Sci. 2018;19:249–254. doi: 10.1016/j.jssas.2018.11.003. DOI
Zhang C., Wang Z., Li Y., Yang Y., Ju X., He R. The preparation and physiochemical characterization of rapeseed protein hydrolysate-chitosan composite films. Food Chem. 2018;272:694–701. doi: 10.1016/j.foodchem.2018.08.097. PubMed DOI
Jamaludin J., Adam F., Rasid R.A., Hassan Z. Thermal studies on Arabic gum—Carrageenan polysaccharides film. Chem. Eng. Res. Bull. 2017;19:80. doi: 10.3329/cerb.v19i0.33800. DOI
Burfield D.R., Loi P.S.T., Doi Y., Mejzík J. DSC studies of tactic polypropylenes: The correlation of polymer stereochemistry with thermal properties. J. Appl. Polym. Sci. 1990;41:1095–1114. doi: 10.1002/app.1990.070410519. DOI
Pereda M., Dufresne A., Aranguren M.I., Marcovich N.E. Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr. Polym. 2013;101:1018–1026. doi: 10.1016/j.carbpol.2013.10.046. PubMed DOI
Liu X., Xu Y., Zhan X., Xie W., Yang X., Cui S.W., Xia W. Development and properties of new kojic acid and chitosan composite biodegradable films for active packaging materials. Int. J. Biol. Macromol. 2019;144:483–490. doi: 10.1016/j.ijbiomac.2019.12.126. PubMed DOI
Avena-Bustillos R., Olsen C., Olson D., Chiou B., Yee E., Bechtel P., McHugh T. Water Vapor Permeability of Mammalian and Fish Gelatin Films. J. Food Sci. 2006;71:E202–E207. doi: 10.1111/j.1750-3841.2006.00016.x. PubMed DOI
Marinello F., La Storia A., Mauriello G., Passeri D. Atomic Force microscopy techniques to investigate activated food packaging materials. Trends Food Sci. Technol. 2018;87:84–93. doi: 10.1016/j.tifs.2018.05.028. DOI
El-Hack M.E.A., El-Saadony M.T., Shafi M.E., Zabermawi N.M., Arif M., Batiha G.E., Khafaga A.F., El-Hakim Y.M.A., Al-Sagheer A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol. 2020;164:2726–2744. doi: 10.1016/j.ijbiomac.2020.08.153. PubMed DOI
Jamróz E., Kulawik P., Tkaczewska J., Guzik P., Zając M., Juszczak L., Krzyściak P., Turek K. The effects of active double-layered furcellaran/gelatin hydrolysate film system with Ala-Tyr peptide on fresh Atlantic mackerel stored at −18 °C. Food Chem. 2020;338:127867. doi: 10.1016/j.foodchem.2020.127867. PubMed DOI
Rabea E.I., Badawy M.E.-T., Stevens C.V., Smagghe G., Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 2003;4:1457–1465. doi: 10.1021/bm034130m. PubMed DOI
Zekrehiwot A., Yetenayet B.T., Ali M., Abebe Z., Tola Y.B., Mohammed A. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon Esculentum Mill.) fruits. Afr. J. Agric. Res. 2017;12:550–565. doi: 10.5897/AJAR2016.11648. DOI
Yaman O., Bayoιndιrlι L. Effects of an Edible Coating and Cold Storage on Shelf-life and Quality of Cherries. LWT Food Sci. Technol. 2002;35:146–150. doi: 10.1006/fstl.2001.0827. DOI
Duan J., Wu R., Strik B.C., Zhao Y. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol. Technol. 2011;59:71–79. doi: 10.1016/j.postharvbio.2010.08.006. DOI
Lafarga T., Aguiló-Aguayo I., Bobo G., Chung A.V., Tiwari B.K. Effect of storage on total phenolics, antioxidant capacity, and physicochemical properties of blueberry (Vaccinium corymbosum L.) jam. J. Food Process. Preserv. 2018;42:e13666. doi: 10.1111/jfpp.13666. DOI
Campaniello D., Bevilacqua A., Sinigaglia M., Corbo M.R. Chitosan: Antimicrobial activity and potential applications for preserving minimally processed strawberries. Food Microbiol. 2008;25:992–1000. doi: 10.1016/j.fm.2008.06.009. PubMed DOI
Yang G., Yue J., Gong X., Qian B., Wang H., Deng Y., Zhao Y. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014;92:46–53. doi: 10.1016/j.postharvbio.2014.01.018. DOI
Alvarez M.V., Ponce A.G., Moreira M.R. Influence of polysaccharide-based edible coatings as carriers of prebiotic fibers on quality attributes of ready-to-eat fresh blueberries. J. Sci. Food Agric. 2017;98:2587–2597. doi: 10.1002/jsfa.8751. PubMed DOI
Bof M., Laurent F., Massolo F., Locaso D., Versino F., García M. Bio-Packaging Material Impact on Blueberries Quality Attributes under Transport and Marketing Conditions. Polymers. 2021;13:481. doi: 10.3390/polym13040481. PubMed DOI PMC
Abugoch L., Tapia C., Plasencia D., Pastor A., Castro-Mandujano O., López L., Escalona V.H. Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film. J. Sci. Food Agric. 2016;96:619–626. doi: 10.1002/jsfa.7132. PubMed DOI
Bambace M.F., Alvarez M.V., Moreira M.D.R. Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Res. Int. 2019;122:653–660. doi: 10.1016/j.foodres.2019.01.040. PubMed DOI