• This record comes from PubMed

Narcissistic T cells: reactivity to self makes a difference

. 2021 Mar ; 288 (6) : 1778-1788. [epub] 20200810

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

It has been appreciated for more than three decades that the interactions between the T-cell antigen receptor and self-antigens are the major determinants of the cell fates of developing thymocytes and the establishment of central tolerance. However, recent evidence shows that the level of self-reactivity substantially contributes to fate choices of positively selected mature T cells in homeostasis, as well as during immune responses. This implies that individual clones of peripheral T cells are predisposed to specific functional properties based on the self-reactivity of their antigen receptors. Overall, the relative difference in the self-reactivity among peripheral T cells is an important factor contributing to the diversity of T-cell responses to foreign antigens.

See more in PubMed

Kappler JW, Roehm N & Marrack P (1987) T-cell tolerance by clonal elimination in the thymus. Cell 49, 273-280.

Baldwin TA, Hogquist KA & Jameson SC (2004) The fourth way? Harnessing aggressive tendencies in the thymus. J Immunol 173, 6515-6520.

Stritesky GL, Jameson SC & Hogquist KA (2012) Selection of self-reactive T cells in the thymus. Annu Rev Immunol 30, 95-114.

Kersh GJ & Allen PM (1996) Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands. J Exp Med 184, 1259-1268.

Smyth LA, Williams O, Huby RDJ, Norton T, Acuto O, Ley SC & Kioussis D (1998) Altered peptide ligands induce quantitatively but not qualitatively different intracellular signals in primary thymocytes. Proc Natl Acad Sci USA 95, 8193-8198.

Evavold BD, Sloan-Lancastert J, Wilson KJ, Rothbard JB & Allen PM (1995) Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands. Immunity 2, 655-663.

Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Holländer GA, Gascoigne NRJ & Palmer E (2006) Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724-729.

Naeher D, Daniels MA, Hausmann B, Guillaume P, Luescher I & Palmer E (2007) A constant affinity threshold for T cell tolerance. J Exp Med 204, 2553-2559.

Williams CB, Engle DL, Kersh GJ, Michael White J & Allen PM (1999) A kinetic threshold between negative and positive selection based on the longevity of the T cell receptor-ligand complex. J Exp Med 189, 1531-1544.

Hogquist KA, Tomlinson AJ, Kieper WC, McGargill MA, Hart MC, Naylor S & Jameson SC (1997) Identification of a naturally occurring ligand for thymic positive selection. Immunity 6, 389-399.

Santori FR, Kieper WC, Brown SM, Lu Y, Neubert TA, Johnson KL, Naylor S, Vukmanović S, Hogquist KA & Jameson SC (2002) Rare, structurally homologous self-peptides promote thymocyte positive selection. Immunity 17, 131-142.

Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ & Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76, 17-27.

Clarke SR, Barnden M, Kurts C, Carbone FR, Miller JF & Heath WR (2000) Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol Cell Biol 78, 110-7.

Saibil SD, Ohteki T, White FM, Luscher M, Zakarian A, Elford A, Shabanowitz J, Nishina H, Hugo P, Penninger J et al. (2003) Weak agonist self-peptides promote selection and tuning of virus-specific T cells. Eur J Immunol 33, 685-696.

Ohteki T, Hessel A, Bachmann MF, Zakarian A, Sebzda E, Tsao MS, McKall-Faienza K, Odermatt B& Ohashi PS (1999) Identification of a cross-reactive self ligand in virus-mediated autoimmunity. Eur J Immunol 29, 2886-2896.

Murata S, Takahama Y & Tanaka K (2008) Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol 20, 192-196.

Nitta T, Murata S, Sasaki K, Fujii H, Ripen AM, Ishimaru N, Koyasu S, Tanaka K & Takahama Y (2010) Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 32, 29-40.

Takada K,Van Laethem F, Xing Y, Akane K, Suzuki H, Murata S, Tanaka K, Jameson SC, Singer A & Takahama Y (2015) TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8(+) T cells. Nat Immunol 16, 1069-1076.

Xing Y, Jameson SC & Hogquist KA (2013) Thymoproteasome subunit-beta5T generates peptide-MHC complexes specialized for positive selection. Proc Natl Acad Sci USA 110, 6979-84.

Kuckelkorn U, Stübler S, Textoris-Taube K, Kilian C, Niewienda A, Henklein P, Janek K, Stumpf MPH, Mishto M & Liepe J (2019) Proteolytic dynamics of human 20S thymoproteasome. J Biol Chem 294, 7740-7754.

Sasaki K, Takada K, Ohte Y, Kondo H, Sorimachi H, Tanaka K, Takahama Y & Murata S (2015) Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells. Nat Commun 6, 7484.

Honey K, Nakagawa T, Peters C & Rudensky A (2002) Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J Exp Med 195, 1349-1358.

Sevenich L, Hagemann S, Stoeckle C, Tolosa E, Peters C & Reinheckel T (2010) Expression of human cathepsin L or human cathepsin V in mouse thymus mediates positive selection of T helper cells in cathepsin L knock-out mice. Biochimie 92, 1674-80.

Myers DR, Zikherman J & Roose JP (2017) Tonic signals: why do lymphocytes bother? Trends Immunol 38, 844-857.

Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, Kutok JL, Kearney JF, Otipoby KL & Rajewsky K (2009) PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573-586.

van Oers NS, Tao W, Watts JD, Johnson P, Aebersold R & Teh HS (1993) Constitutive tyrosine phosphorylation of the T-cell receptor (TCR) zeta subunit: regulation of TCR-associated protein tyrosine kinase activity by TCR zeta. Mol Cell Biol 13, 5771-5780.

Horkova V, Drobek A, Mueller D, Gubser C, Niederlova V, Wyss L, King CG, Zehn D & Stepanek O (2020) Dynamics of the coreceptor-LCK interactions during T cell development shape the self-reactivity of peripheral CD4 and CD8 T cells. Cell Rep 30, 1504-1514 e7.

Myers DR, Lau T, Markegard E, Lim HW, Kasler H, Zhu M, Barczak A, Huizar JP, Zikherman J, Erle DJ et al. (2017) Tonic LAT-HDAC7 signals sustain Nur77 and Irf4 expression to tune naive CD4 T cells. Cell Rep 19, 1558-1571.

Stefanova I, Dorfman JR & Germain RN (2002) Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429-434.

van Oers NS, Killeen N & Weiss A (1994) ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR zeta in murine thymocytes and lymph node T cells. Immunity 1, 675-685.

Polic B,Kunkel D, Scheffold A & Rajewsky K (2001) How alpha beta T cells deal with induced TCR alpha ablation. Proc Natl Acad Sci USA 98, 8744-8749.

Rooke R, Waltzinger C, Benoist C & Mathis D (1997) Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity 7, 123-134.

Witherden D, van Oers N, Waltzinger C, Weiss A, Benoist C & Mathis D (2000) Tetracycline-controllable selection of CD4(+) T cells: half-life and survival signals in the absence of major histocompatibility complex class II molecules. J Exp Med 191, 355-364.

Tanchot C, Lemonnier FA, Pérarnau B, Freitas AA & Rocha B (1997) Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057-2062.

Takeda S, Rodewald H-R, Arakawa H, Bluethmann H & Shimizu T (1996) MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217-228.

Hochweller K, Wabnitz GH, Samstag Y, Suffner J, Hammerling GJ & Garbi N (2010) Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc Natl Acad Sci USA 107, 5931-5936.

Fulton RB, Hamilton SE, Xing Y, Best JA, Goldrath AW, Hogquist KA & Jameson SC (2015) The TCR's sensitivity to self peptide-MHC dictates the ability of naive CD8(+) T cells to respond to foreign antigens. Nat Immunol 16, 107-117.

Graw F, Scott Weber K, Allen PM & Perelson AS (2012) Dynamics of CD4(+) T cell responses against Listeria monocytogenes. J Immunol 189, 5250-5256.

Hamilton SE, Wolkers MC, Schoenberger SP & Jameson SC (2006) The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol 7, 475-481.

Persaud SP, Parker CR, Lo W-L, Weber KS & Allen PM (2014) Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat Immunol 15, 266-274.

Swee LK, Tan ZW, Sanecka A, Yoshida N, Patel H, Grotenbreg G, Frickel E-M & Ploegh HL (2016) Peripheral self-reactivity regulates antigen-specific CD8 T-cell responses and cell division under physiological conditions. Open Biol 6, 160293.

Azzam HS, Grinberg A, Lui K, Shen H, Shores EW & Love PE (1998) CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J Exp Med 188, 2301-2311.

Klein L, Kyewski B, Allen PM & Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14, 377-391.

Dorfman JR, Štefanová I, Yasutomo K & Germain RN (2000) CD4+ T cell survival is not directly linked to self-MHC-induced TCR signaling. Nat Immunol 1, 329-335.

Mandl JN, Monteiro JP, Vrisekoop N & Germain RN (2013) T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 38, 263-274.

Pena-Rossi C, Zuckerman LA, Strong J, Kwan J, Ferris W, Chan S, Tarakhovsky A, Beyers AD & Killeen N (1999) Negative regulation of CD4 lineage development and responses by CD5. J Immunol 163, 6494-6501.

Bachmaier K, Krawczyk C, Kozieradzki I, Kong Y-Y, Sasaki T, Oliveira-dos-Santos A, Mariathasan S, Bouchard D, Wakeham A, Itie A (2000) Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211-216.

Carmo AM, Castro MA & Arosa FA (1999) CD2 and CD3 associate independently with CD5 and differentially regulate signaling through CD5 in Jurkat T cells. J Immunol 163, 4238-4245.

Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu R-J, Jang IK, Gutkind JS, Shevach E & Gu H (2000) Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216-220.

Fang D & Liu YC (2001) Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat Immunol 2, 870-875.

Perez-Villar JJ, Whitney GS, Bowen MA, Hewgill DH, Aruffo AA & Kanner SB (1999) CD5 negatively regulates the T-cell antigen receptor signal transduction pathway: involvement of SH2-containing phosphotyrosine phosphatase SHP-1. Mol Cell Biol 19, 2903-2912.

Thien CB & Langdon WY (2005) c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem J 391 (Pt 2), 153-166.

Wang HY, Altman Y, Fang D, Elly C, Dai Y, Shao Y & Liu YC (2001) Cbl promotes ubiquitination of the T cell receptor zeta through an adaptor function of Zap-70. J Biol Chem 276, 26004-26011.

Nowyhed HN, Huynh TR, Thomas GD, Blatchley A & Hedrick CC (2015) Cutting edge: the orphan nuclear receptor Nr4a1 regulates CD8+ T cell expansion and effector function through direct repression of Irf4. J Immunol 195, 3515-3519.

Osborne BA, Smith SW, Liu Z-G, McLaughlin KA, Grimm L & Schwartz LM (1994) Identification of genes induced during apoptosis in T lymphocytes. Immunol Rev 142, 301-320.

Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J & Hogquist KA (2011) T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med 208, 1279-1289.

Jameson SC (2005) T cell homeostasis: keeping useful T cells alive and live T cells useful. Semin Immunol 17, 231-237.

Seddon B & Zamoyska R (2002) TCR and IL-7 receptor signals can operate independently or synergize to promote lymphopenia-induced expansion of naive T cells. J Immunol 169, 3752-3759.

Ge Q, Bai A, Jones B, Eisen H n & Chen J (2004) Competition for self-peptide-MHC complexes and cytokines between naive and memory CD8+ T cells expressing the same or different T cell receptors. Proc Natl Acad Sci USA 101, 3041-3046.

Yates A, Saini M, Mathiot A & Seddon B (2008) Mathematical modeling reveals the biological program regulating lymphopenia-induced proliferation. J Immunol 180, 1414-1422.

Hogan T, Shuvaev A, Commenges D, Yates A, Callard R, Thiebaut R & Seddon B (2013) Clonally diverse T cell homeostasis is maintained by a common program of cell-cycle control. J Immunol 190, 3985-3993.

Goldrath AW, Luckey CJ, Park R, Benoist C & Mathis D (2004) The molecular program induced in T cells undergoing homeostatic proliferation. Proc Natl Acad Sci USA 101, 16885-16890.

Kieper WC, Burghardt JT & Surh CD (2004) A role for TCR affinity in regulating naive T cell homeostasis. J Immunol 172, 40-44.

Vrisekoop N, Artusa P, Monteiro JP & Mandl JN (2017) Weakly self-reactive T-cell clones can homeostatically expand when present at low numbers. Eur J Immunol 47, 68-73.

Weber KS, Li Q-J, Persaud SP, Campbell JD, Davis MM & Allen PM (2012) Distinct CD4+ helper T cells involved in primary and secondary responses to infection. Proc Natl Acad Sci USA 109, 9511-9516.

Zinzow-Kramer WM, Weiss A & Au-Yeung BB (2019) Adaptation by naive CD4(+) T cells to self-antigen-dependent TCR signaling induces functional heterogeneity and tolerance. Proc Natl Acad Sci USA 116, 15160-15169.

Drobek A, Moudra A, Mueller D, Huranova M, Horkova V, Pribikova M, Ivanek R, Oberle S, Zehn D, McCoy KD et al. (2018) Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J 37, e98518.

White JT, Cross EW, Burchill MA, Danhorn T, McCarter MD, Rosen HR, O'Connor B & Kedl RM (2016) Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat Commun 7, 11291.

Erman B, Alag AS, Dahle O, van Laethem F, Sarafova SD, Guinter TI, Sharrow SO, Grinberg A, Love PE & Singer A (2006) Coreceptor signal strength regulates positive selection but does not determine CD4/CD8 lineage choice in a physiologic in vivo model. J Immunol 177, 6613-6625.

Miller CH, Klawon DEJ, Zeng S, Lee V, Socci ND & Savage PA (2020) Eomes identifies thymic precursors of self-specific memory-phenotype CD8(+) T cells. Nat Immunol 21, 567-577.

Lee JY, Hamilton SE, Akue AD, Hogquist KA & Jameson SC (2013) Virtual memory CD8 T cells display unique functional properties. Proc Natl Acad Sci USA 110, 13498-13503.

Aguado E, Richelme S, Nuñez-Cruz S, Miazek A, Mura A-M, Richelme M, Guo X-J, Sainty D, He H-T, Malissen B et al. (2002) Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036-2040.

Myers DR, Norlin E, Vercoulen Y & Roose JP (2019) Active tonic mTORC1 signals shape baseline translation in naive T cells. Cell Rep 27, 1858-1874 e6.

Sharma P & Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205-214.

Kong YC & Flynn JC (2014) Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1. Front Immunol 5, 206.

Kaiser AD, Gadiot J, Guislain A & Blank CU (2013) Mimicking homeostatic proliferation in vitro generates T cells with high anti-tumor function in non-lymphopenic hosts. Cancer Immunol Immunother 62, 503-515.

Alotaibi F, Rytelewski M, Figueredo R, Zareardalan R, Zhang M, Ferguson PJ, Vareki SM, Najajreh Y, El-Hajjar M, Zheng Xet al. (2020) CD5 blockade enhances ex vivo CD8(+) T cell activation and tumour cell cytotoxicity. Eur J Immunol 50, 695-704.

Tabbekh M, Franciszkiewicz K, Haouas H, Lécluse Y, Benihoud K, Raman C & Mami-Chouaib F (2011) Rescue of tumor-infiltrating lymphocytes from activation-induced cell death enhances the antitumor CTL response in CD5-deficient mice. J Immunol 187, 102-109.

Friedlein G, El Hage F, Vergnon I, Richon C, Saulnier P, Lécluse Y, Caignard A, Boumsell L, Bismuth G, Chouaib S et al. (2007) Human CD5 protects circulating tumor antigen-specific CTL from tumor-mediated activation-induced cell death. J Immunol 178, 6821-6827.

Cho JH & Sprent J (2018) TCR tuning of T cell subsets. Immunol Rev 283, 129-137.

Trager U, Sierro S, Djordjevic G, Bouzo B, Khandwala S, Meloni A, Mortensen M & Simon AK (2012) The immune response to melanoma is limited by thymic selection of self-antigens. PLoS One 7, e35005.

Zhu ML, Nagavalli A & Su MA (2013) Aire deficiency promotes TRP-1-specific immune rejection of melanoma. Cancer Res 73, 2104-2116.

Bakhru P, Zhu M-L, Wang H-H, Hong LK, Khan I, Mouchess M, Gulati AS, Starmer J, Hou Y, Sailer D et al. (2017) Combination central tolerance and peripheral checkpoint blockade unleashes antimelanoma immunity. JCI Insight 2, e93265.

Zemmour D, Zilionis R, Kiner E, Klein AM, Mathis D & Benoist C (2018) Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat Immunol 19, 291-301.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...