Hierarchical TiO2 Layers Prepared by Plasma Jets

. 2021 Nov 30 ; 11 (12) : . [epub] 20211130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947602

Grantová podpora
19-21801S Czech Science Foundation
19-12109S Czech Science Foundation
LTAUSA19001 Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_013/0001821 Ministry of Education Youth and Sports
MSM200402101 Czech Academy of Sciences
Strategy AV21, 16/2021 Czech Academy of Sciences
8J20FR012 Ministry of Education Youth and Sports
LM2018110 Ministry of Education Youth and Sports

Heterogeneous photocatalysis of TiO2 is one of the most efficient advanced oxidation processes for water and air purification. Here, we prepared hierarchical TiO2 layers (Spikelets) by hollow-cathode discharge sputtering and tested their photocatalytic performance in the abatement of inorganic (NO, NO2) and organic (4-chlorophenol) pollutant dispersed in air and water, respectively. The structural-textural properties of the photocatalysts were determined via variety of physico-chemical techniques (XRD, Raman spectroscopy, SEM, FE-SEM. DF-TEM, EDAX and DC measurements). The photocatalysis was carried out under conditions similar to real environment conditions. Although the abatement of NO and NO2 was comparable with that of industrial benchmark Aeroxide® TiO2 P25, the formation of harmful nitrous acid (HONO) product on the Spikelet TiO2 layers was suppressed. Similarly, in the decontamination of water by organics, the mineralization of 4-chlorophenol on Spikelet layers was interestingly the same, although their reaction rate constant was three-times lower. The possible explanation may be the more than half-magnitude order higher external quantum efficacy (EQE) compared to that of the reference TiO2 P25 layer. Therefore, such favorable kinetics and reaction selectivity, together with feasible scale-up, make the hierarchical TiO2 layers very promising photocatalyst which can be used for environmental remediation.

Zobrazit více v PubMed

Kelly P.J., West G.T., Ratova M., Fisher L., Ostovarpour S., Verran J. Structural Formation and Photocatalytic Activity of Magnetron Sputtered Titania and Doped-Titania Coatings. Molecules. 2014;19:16327–16348. doi: 10.3390/molecules191016327. PubMed DOI PMC

Wang Y.-H., Rahman K.H., Wu C.-C., Chen K.-C. A Review on the Pathways of the Improved Structural Characteristics and Photocatalytic Performance of Titanium Dioxide (TiO2) Thin Layers Fabricated by the Magnetron-Sputtering Technique. Catalysts. 2020;10:598. doi: 10.3390/catal10060598. DOI

Navabpour P., Ostovarpour S., Hampshire J., Kelly P., Verran J., Cooke K. The effect of process parameters on the structure, photocatalytic and self-cleaning properties of TiO2 and Ag-TiO2 coatings deposited using reactive magnetron sputtering. Thin Solid Layers. 2014;571:75–83. doi: 10.1016/j.tsf.2014.10.040. DOI

Fresno F., González M.U., Martínez L., Fernández-Castro M., Barawi M., Villar-García I.J., Soler-Morala J., Reñones P., Luna M., Huttel Y., et al. Photo-Induced Self-Cleaning and Wettability in TiO2 Nanocolumn Arrays Obtained by Glancing-Angle Deposition with Sputtering. Adv. Sustain. Syst. 2021;5:2100071. doi: 10.1002/adsu.202100071. DOI

Tuckute S., Varnagiris S., Urbonavicius M., Lelis M., Sakalauskaite S. Tailoring of TiO2 layer crystal texture for higher photocatalysis efficiency. Appl. Surf. Sci. 2019;489:576–583. doi: 10.1016/j.apsusc.2019.05.341. DOI

Skowronski L., Wachowiak A.A., Zdunek K., Trzcinski M., Naparty M.K. TiO2-based decorative coatings deposited on the AISI 316L stainless steel and glass using an industrial scale magnetron. Thin Solid Layers. 2017;627:1–8. doi: 10.1016/j.tsf.2017.01.039. DOI

Di Fonzo F., Casari C.S., Russo V., Brunella M.F., Li Bassi A., Bottani C.E. Hierarchically organized nanostructured TiO2 for photocatalysis applications. Nanotechnology. 2009;20:015604. doi: 10.1088/0957-4484/20/1/015604. PubMed DOI

Ishii K., Kurokawa K., Yoshihara S. High-Rate Deposition of Titanium Dioxide Layers with Photocatalytic Activities by Gas Flow Sputtering. IEICE Trans. Electron. 2004;87:232–237.

Kment S., Kluson P., Hubicka Z., Krysa J., Cada M., Gregora I., Deyneka A., Remes Z., Zabova H., Jastrabik L. Double hollow cathode plasma jet-low temperature method for the TiO2−xNx photoresponding layers. Electrochim. Acta. 2010;55:1548–1556. doi: 10.1016/j.electacta.2009.10.017. DOI

Kubo Y., Iwabuchi Y., Yoshikawa M., Sato Y., Shigesato Y. High rate deposition of photocatalytic TiO2 layers with high activity by hollow cathode gas-flow sputtering method. J. Vac. Sci. Technol. A. 2008;26:893–897. doi: 10.1116/1.2836425. DOI

Sakuma H., Ishii K. Gas flow sputtering: Versatile process for the growth of nanopillars, nanoparticles, and epitaxial thin layers. J. Magn. Magn. Mater. 2009;321:872–875. doi: 10.1016/j.jmmm.2008.11.053. DOI

Ekeroth S., Ikeda S., Boyd R.D., Shimizu T., Helmersson U. Growth of semi-coherent Ni and NiO dual-phase nanoparticles using hollow cathode sputtering. J. Nanoparticle Res. 2019;21:37. doi: 10.1007/s11051-019-4479-4. DOI

Gunnarsson R., Brenning N., Boyd R.D., Helmersson U. Nucleation of titanium nanoparticles in an oxygen-starved environment. I: Experiments. J. Phys. D Appl. Phys. 2018;51:455201. doi: 10.1088/1361-6463/aae117. DOI

Gunnarsson R., Pilch I., Boyd R.D., Brenning N., Helmersson U. The influence of pressure and gas flow on size and morphology of titanium oxide nanoparticles synthesized by hollow cathode sputtering. J. Appl. Phys. 2016;120:044308. doi: 10.1063/1.4959993. DOI

Olejníček J., Šmíd J., Čada M., Kšírová P., Kohout M., Perekrestov R., Tvarog D., Kment Š., Kmentová H., Hubička Z. High rate deposition of photoactive TiO2 layers by hot hollow cathode. Surf. Coat. Technol. 2020;383:125256. doi: 10.1016/j.surfcoat.2019.125256. DOI

Olejníček J., Šmíd J., Perekrestov R., Kšírová P., Rathouský J., Kohout M., Dvořáková M., Kment Š., Jurek K., Čada M., et al. Co3O4 thin layers prepared by hollow cathode discharge. Surf. Coat. Technol. 2019;366:303–310. doi: 10.1016/j.surfcoat.2019.03.010. DOI

Olejníček J., Hrubantová A., Volfová L., Dvořáková M., Kohout M., Tvarog D., Gedeon O., Wulff H., Hippler R., Hubička Z. WO3 and WO3-x thin films prepared by DC hollow cathode discharge. Vacuum. 2021:110679. doi: 10.1016/j.vacuum.2021.110679. DOI

Hubička Z., Pribil G., Soukup R.J., Ianno N.J. Investigation of the rf and dc hollow cathode plasma-jet sputtering systems for the deposition of silicon thin layers. Surf. Coat. Technol. 2002;160:114–123. doi: 10.1016/S0257-8972(02)00389-4. DOI

Mikuška P., Motyka K., Večeřa Z. Determination of nitrous acid in air using wet effluent diffusion denuder–FIA technique. Talanta. 2008;77:635–641. doi: 10.1016/j.talanta.2008.07.008. DOI

Ohtani B., Prieto-Mahaney O.O., Li D., Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A Chem. 2010;216:179–182. doi: 10.1016/j.jphotochem.2010.07.024. DOI

Hurum D.C., Agrios A.G., Gray K.A., Rajh T., Thurnauer M.C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B. 2003;107:4545–4549. doi: 10.1021/jp0273934. DOI

Bickley R.I., Gonzalez-Carreno T., Lees J.S., Palmisano L., Tilley R.J.D. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991;92:178–190. doi: 10.1016/0022-4596(91)90255-G. DOI

Scanlon D.O., Dunnill C.W., Buckeridge J., Shevlin S.A., Logsdail A.J., Woodley S.M., Catlow C.R.A., Powell M.J., Palgrave R.G., Parkin I.P., et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013;12:798–801. doi: 10.1038/nmat3697. PubMed DOI

Zouzelka R., Rathousky J. Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl. Catal. B Environ. 2017;217:466–476. doi: 10.1016/j.apcatb.2017.06.009. DOI

Guerin V.M., Zouzelka R., Bibova-Lipsova H., Jirkovsky J., Rathousky J., Pauporte T. Experimental and DFT study of the degradation of 4-chlorophenol on hierarchical micro-/nanostructured oxide films. Appl. Catal. B Environ. 2015;168:132–140. doi: 10.1016/j.apcatb.2014.12.041. DOI

Zouzelka R., Kusumawati Y., Remzova M., Rathousky J., Pauporté T. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation. J. Hazard. Mater. 2016;317:52–59. doi: 10.1016/j.jhazmat.2016.05.056. PubMed DOI

Zouzelka R., Remzova M., Plsek J., Brabec L., Rathousky J. Immobilized rGO/TiO2 photocatalyst for decontamination of water. Catalysts. 2019;9:708. doi: 10.3390/catal9090708. DOI

Bredemeyer N., De Buhr S., Hesse D. Parameters influencing photoassisted adsorption of NO on TiO2 powder. Chem. Eng. Technol. 2000;23:527–533. doi: 10.1002/1521-4125(200006)23:6<527::AID-CEAT527>3.0.CO;2-T. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...