Fe3O4 Nanoparticles on 3D Porous Carbon Skeleton Derived from Rape Pollen for High-Performance Li-Ion Capacitors

. 2021 Dec 10 ; 11 (12) : . [epub] 20211210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947703

Grantová podpora
51702098 National Natural Science Foundation of China
18520744400 International Cooperation Project of Shanghai Municipal Science and Technology Committee

Herein, a three-dimensional (3D) Fe3O4@C composite with hollow porous structure is prepared by simple solution method and calcination treatment with biomass waste rape pollen (RP) as a carbon source, which is served as an anode of Li-ion capacitor (LIC). The 3D interconnected porous structure and conductive networks facilitate the transfer of ion/electron and accommodate the volume changes of Fe3O4 during the electrochemical reaction process, which leads to the excellent performance of the Fe3O4@C composite electrode. The electrochemical analysis demonstrates that the hybrid LIC fabricated with Fe3O4@C as the anode and activated carbon (AC) as the cathode can operate at a voltage of 4.0 V and exhibit a high energy density of 140.6 Wh kg-1 at 200 W kg-1 (52.8 Wh kg-1 at 10 kW kg-1), along with excellent cycling stability, with a capacity retention of 83.3% over 6000 cycles. Hence, these encouraging results indicate that Fe3O4@C has great potential in developing advanced LICs electrode materials for the next generation of energy storage systems.

Zobrazit více v PubMed

Franta B. Early oil industry knowledge of CO2 and global warming. Nat. Clim. Chang. 2018;8:1024–1025. doi: 10.1038/s41558-018-0349-9. DOI

Searchinger T.D., Beringer T., Holtsmark B., Kammen D.M., Lambin E.F., Lucht W., Raven P., Van Ypersele J.-P. Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 2018;9:3741. doi: 10.1038/s41467-018-06175-4. PubMed DOI PMC

Zhou G., Xu L., Hu G., Mai L., Cui Y. Nanowires for electrochemical energy storage. Chem. Rev. 2019;119:11042–11109. doi: 10.1021/acs.chemrev.9b00326. PubMed DOI

Eftekhari A. LiFePO4/C nanocomposites for lithium-ion batteries. J. Power Sources. 2017;343:395–411. doi: 10.1016/j.jpowsour.2017.01.080. DOI

Zhu J., Wierzbicki T., Li W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J. Power Sources. 2018;378:153–168. doi: 10.1016/j.jpowsour.2017.12.034. DOI

Zhu Q., Zhao D., Cheng M., Zhou J., Owusu K.A., Mai L., Yu Y. A New view of supercapacitors: Integrated supercapacitors. Adv. Energy Mater. 2019;9:1901081. doi: 10.1002/aenm.201901081. DOI

Noori A., El-Kady M.F., Rahmanifar M.S., Kaner R.B., Mousavi M.F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Soc. Rev. 2019;48:1272–1341. doi: 10.1039/C8CS00581H. PubMed DOI

Ding J., Wang H., Li Z., Cui K., Karpuzov D., Tan X., Kohandehghan A., Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ. Sci. 2014;8:941–955. doi: 10.1039/C4EE02986K. DOI

Jeżowski P., Crosnier O., Deunf E., Poizot P., Beguin F., Brousse T. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 2017;17:167–173. doi: 10.1038/nmat5029. PubMed DOI

Han P., Xu G., Han X., Zhao J., Zhou X., Cui G. Lithium ion capacitors in organic electrolyte system: Scientific problems, material development, and key technologies. Adv. Energy Mater. 2018;8:1801243. doi: 10.1002/aenm.201801243. DOI

Zuo W., Li R., Zhou C., Li Y., Xia J., Liu J. Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci. 2017;4:1600539. doi: 10.1002/advs.201600539. PubMed DOI PMC

Li B., Zheng J., Zhang H., Jin L., Yang D., Lv H., Shen C., Shellikeri A., Zheng Y., Gong R., et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018;30:e1705670. doi: 10.1002/adma.201705670. PubMed DOI

Zhao X., Zhang X., Li C., Sun X., Liu J., Wang K., Ma Y. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode. ACS Sustain. Chem. Eng. 2019;7:11275–11283. doi: 10.1021/acssuschemeng.9b00641. DOI

Li H., Lang J., Lei S., Chen J., Wang K., Liu L., Zhang T., Liu W., Yan X. A High-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 2018;28:1800757. doi: 10.1002/adfm.201800757. DOI

Xia H., Wan Y., Yuan G., Fu Y., Wang X. Fe3O4/carbon core–shell nanotubes as promising anode materials for lithium-ion batteries. J. Power Sources. 2013;241:486–493. doi: 10.1016/j.jpowsour.2013.04.126. DOI

Jin S., Deng H., Long D., Liu X., Zhan L., Liang X., Qiao W., Ling L. Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. J. Power Sources. 2011;196:3887–3893. doi: 10.1016/j.jpowsour.2010.12.078. DOI

Wang Y., Li Y., Qiu Z., Wu X., Zhou P., Zhou T., Zhao J., Miao Z., Zhou J., Zhuo S. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A. 2018;6:11189–11197. doi: 10.1039/C8TA00122G. DOI

Yang Z., Su D., Yang J., Wang J. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries. J. Power Sources. 2017;363:161–167. doi: 10.1016/j.jpowsour.2017.07.080. DOI

Chen G., Zhou M., Catanach J., Liaw T., Fei L., Deng S., Luo H. Solvothermal route based in situ carbonization to Fe3O4@C as anode material for lithium ion battery. Nano Energy. 2014;8:126–132. doi: 10.1016/j.nanoen.2014.06.005. DOI

Taberna P.-L., Mitra S., Poizot P., Simon P., Tarascon J.-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006;5:567–573. doi: 10.1038/nmat1672. PubMed DOI

Han D., Guo G., Yan Y., Li T., Wang B., Dong A. Pomegranate-like, carbon-coated Fe3O4 nanoparticle superparticles for high-performance lithium storage. Energy Storage Mater. 2018;10:32–39. doi: 10.1016/j.ensm.2017.08.003. DOI

Park G.D., Hong J.H., Jung D.S., Lee J.-H., Kang Y.C. Unique structured microspheres with multishells comprising graphitic carbon-coated Fe3O4 hollow nanopowders as anode materials for high-performance Li-ion batteries. J. Mater. Chem. A. 2019;7:15766–15773. doi: 10.1039/C9TA04235K. DOI

Usui H., Domi Y., Iwama E., Kurokawa H., Sakaguchi H. α-Fe2O3 conversion anodes with improved Na-storage properties by Sb addition. Mater. Chem. Phys. 2021;272:125023. doi: 10.1016/j.matchemphys.2021.125023. DOI

Wandt J., Freiberg A.T., Ogrodnik A., Gasteiger H. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today. 2018;21:825–833. doi: 10.1016/j.mattod.2018.03.037. DOI

Feng Q., Li H., Tan Z., Huang Z., Jiang L., Zhou H., Pan H., Zhou Q., Ma S., Kuang Y. Design and preparation of three-dimensional MnO/N-doped carbon nanocomposites based on waste biomass for high storage and ultra-fast transfer of lithium ions. J. Mater. Chem. A. 2018;6:19479–19487. doi: 10.1039/C8TA07096B. DOI

Li H., Ma S., Cai H., Zhou H., Huang Z., Hou Z., Wu J., Yang W., Yi H., Fu C., et al. Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2018;18:338–348. doi: 10.1016/j.ensm.2018.08.016. DOI

Wei L., Tian K., Zhang X., Jin Y., Shi T., Guo X. 3D Porous hierarchical microspheres of activated carbon from nature through nanotechnology for electrochemical double-layer capacitors. ACS Sustain. Chem. Eng. 2016;4:6463–6472. doi: 10.1021/acssuschemeng.6b01227. DOI

Wan L., Wei W., Xie M., Zhang Y., Li X., Xiao R., Chen J., Du C. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochim. Acta. 2019;311:72–82. doi: 10.1016/j.electacta.2019.04.106. DOI

Wang D.-W., Li F., Liu M., Lu G.Q., Cheng H.-M. 3D Aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. 2007;120:379–382. doi: 10.1002/ange.200702721. PubMed DOI

Zhang H.-J., Jia Q.-C., Kong L.-B. Multi-dimensional hybrid heterostructure MoS2@C nanocomposite as a highly reversible anode for high-energy lithium-ion capacitors. Appl. Surf. Sci. 2020;531:147222. doi: 10.1016/j.apsusc.2020.147222. DOI

Hou W., Zhou Z., Zhang L., Zhao S., Peng B., Hu Z., Ren W., Ye Z.-G., Jiang Z.-D., Liu M. Low-voltage-manipulating spin dynamics of flexible Fe3O4 films through ionic gel gating for wearable devices. ACS Appl. Mater. Interfaces. 2019;11:21727–21733. doi: 10.1021/acsami.9b06505. PubMed DOI

Kim W., Kawaguchi K., Koshizaki N., Sohma M., Matsumoto T. Fabrication and magnetoresistance of tunnel junctions using half-metallic Fe3O4. J. Appl. Phys. 2003;93:8032–8034. doi: 10.1063/1.1557337. DOI

Yuan S., Zhou Z., Li G. Structural evolution from mesoporous α-Fe2O3 to Fe3O4@C and γ-Fe2O3 nanospheres and their lithium storage performances. CrystEngComm. 2011;13:4709–4713. doi: 10.1039/c0ce00902d. DOI

Cao Y., Yang Y., Ren Z., Jian N., Gao M., Wu Y., Zhu M., Pan F., Liu Y., Pan H. A new strategy to effectively suppress the initial capacity fading of iron oxides by reacting with LiBH4. Adv. Funct. Mater. 2017;27:1700342. doi: 10.1002/adfm.201700342. DOI

Zhu G., Chen T., Wang L., Ma L., Hu Y., Chen R., Wang Y., Wang C., Yan W., Tie Z., et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Mater. 2018;14:246–252. doi: 10.1016/j.ensm.2018.04.009. DOI

Yan J., Ren C.E., Maleski K., Hatter C.B., Anasori B., Urbankowski P., Sarycheva A., Gogotsi Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017;27:1701264. doi: 10.1002/adfm.201701264. DOI

Lou S., Cheng X., Wang L., Gao J., Li Q., Ma Y., Gao Y., Zuo P., Du C., Yin G. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. J. Power Sources. 2017;361:80–86. doi: 10.1016/j.jpowsour.2017.06.023. DOI

Luo J., Liu J., Zeng Z., Ng C.F., Ma L., Zhang H., Lin J., Shen Z., Fan H.J. Three-dimensional graphene foam supported Fe3O4 lithium batteryanodes with long cycle life and high rate capability. Nano Lett. 2013;13:6136–6143. doi: 10.1021/nl403461n. PubMed DOI

Gamby J., Taberna P., Simon P., Fauvarque J., Chesneau M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources. 2001;101:109–116. doi: 10.1016/S0378-7753(01)00707-8. DOI

Han C., Xu L., Li H., Shi R., Zhang T., Li J., Wong C.-P., Kang F., Lin Z., Li B. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon. 2018;140:296–305. doi: 10.1016/j.carbon.2018.09.010. DOI

Yu X., Deng J., Zhan C., Lv R., Huang Z.-H., Kang F. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochim. Acta. 2017;228:76–81. doi: 10.1016/j.electacta.2017.01.058. DOI

Shi R., Han C., Xu X., Qing X., Xu L., Li H., Li J., Wong C.-P., Li B. Electrospun N-doped hierarchical porous carbon nanofiber with improved degree of graphitization for high-performance lithium ion capacitor. Chem.-A Eur. J. 2018;24:10460–10467. doi: 10.1002/chem.201801345. PubMed DOI

Zhang F., Zhang T., Yang X., Zhang L., Leng K., Huang Y., Chen Y. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 2013;6:1623–1632. doi: 10.1039/c3ee40509e. DOI

Brandt A., Balducci A. A study about the use of carbon coated iron oxide-based electrodes in lithium-ion capacitors. Electrochim. Acta. 2013;108:219–225. doi: 10.1016/j.electacta.2013.06.076. DOI

Liu S., Luo Z., Tian G., Zhu M., Cai Z., Pan A., Liang S. TiO2 nanorods grown on carbon fiber cloth as binder-free electrode for sodium-ion batteries and flexible sodium-ion capacitors. J. Power Sources. 2017;363:284–290. doi: 10.1016/j.jpowsour.2017.07.098. DOI

Zhao Y., Cui Y., Shi J., Liu W., Shi Z., Chen S., Wang X., Wang H. Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J. Mater. Chem. A. 2017;5:15243–15252. doi: 10.1039/C7TA04154C. DOI

Zhang S., Li C., Zhang X., Sun X., Wang K., Ma Y. High performance lithium-ion hybrid capacitors employing Fe3O4–graphene composite anode and activated carbon cathode. ACS Appl. Mater. Interfaces. 2017;9:17136–17144. doi: 10.1021/acsami.7b03452. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace