• This record comes from PubMed

Remediation of Smelter Contaminated Soil by Sequential Washing Using Biosurfactants

. 2021 Dec 07 ; 18 (24) : . [epub] 20211207

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

This paper presents experimental results from the use of biosurfactants in the remediation of a soil from a smelter in Poland. In the soil, concentrations of Cu (1659.1 mg/kg) and Pb (290.8 mg/kg) exceeded the limit values. Triple batch washing was tested as a soil treatment. Three main variants were used, each starting with a different plant-derived (saponin, S; tannic acid, T) or microbial (rhamnolipids, R) biosurfactant solution in the first washing, followed by 9 different sequences using combinations of the tested biosurfactants (27 in total). The efficiency of the washing was determined based on the concentration of metal removed after each washing (CR), the cumulative removal efficiency (Ecumulative) and metal stability (calculated as the reduced partition index, Ir, based on the metal fractions from BCR sequential extraction). The type of biosurfactant sequence influenced the CR values. The variants that began with S and R had the highest average Ecumulative for Cu and Pb, respectively. The Ecumulative value correlated very strongly (r > 0.8) with the stability of the residual metals in the soil. The average Ecumulative and stability of Cu were the highest, 87.4% and 0.40, respectively, with the S-S-S, S-S-T, S-S-R and S-R-T sequences. Lead removal and stability were the highest, 64-73% and 0.36-0.41, respectively, with the R-R-R, R-R-S, R-S-R and R-S-S sequences. Although the loss of biosurfactants was below 10% after each washing, sequential washing with biosurfactants enriched the soil with external organic carbon by an average of 27-fold (S-first variant), 24-fold (R first) or 19-fold (T first). With regard to environmental limit values, metal stability and organic carbon resources, sequential washing with different biosurfactants is a beneficial strategy for the remediation of smelter-contaminated soil with given properties.

See more in PubMed

Khan S., Naushad M., Lima E.C., Zhang S., Shaheen S.M., Rinklebe J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021;417:126039. doi: 10.1016/j.jhazmat.2021.126039. PubMed DOI

Mishra S., Lin Z., Pang S., Zhang Y., Bhatt P., Chen S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J. Hazard. Mater. 2021;418:126253. doi: 10.1016/j.jhazmat.2021.126253. PubMed DOI

Yang Z.H., Dong C.D., Chen C.W., Sheu Y.T., Kao C.M. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environ. Sci. Pollut. Res. 2018;25:5231–5242. doi: 10.1007/s11356-017-9235-7. PubMed DOI

Gusiatin Z.M., Kulikowska D., Klik B. New-generation washing agents in remediation of metal-polluted soils and methods for washing effluent treatment: A review. Int. J. Environ. Res. Public Health. 2020;17:6220. doi: 10.3390/ijerph17176220. PubMed DOI PMC

De Almeida D.G., Soares Da Silva R.D.C.F., Luna J.M., Rufino R.D., Santos V.A., Banat I.M., Sarubbo L.A. Biosurfactants: Promising molecules for petroleum biotechnology advances. Front. Microbiol. 2016;7:1718. doi: 10.3389/fmicb.2016.01718. PubMed DOI PMC

Mulligan C.N. Sustainable remediation of contaminated soil using biosurfactants. Front. Bioeng. Biotechnol. 2021;9:195. doi: 10.3389/fbioe.2021.635196. PubMed DOI PMC

Jimoh A.A., Lin J. Biotechnological applications of Paenibacillus sp. D9 lipopeptide biosurfactant produced in low-cost substrates. Appl. Biochem. Biotechnol. 2020;191:921–941. doi: 10.1007/s12010-020-03246-5. PubMed DOI

Liu Z., Li Z., Zhong H., Zeng G., Liang Y., Chen M., Wu Z., Zhou Y., Yu M., Shao B. Recent advances in the environmental applications of biosurfactant saponins: A review. J. Environ. Chem. Eng. 2017;5:6030–6038. doi: 10.1016/j.jece.2017.11.021. DOI

Tsang D.C., Olds W.E., Weber P. Residual leachability of CCA-contaminated soil after treatment with biodegradable chelating agents and lignite-derived humic substances. J. Soil. Sediment. 2013;13:895–905. doi: 10.1007/s11368-013-0662-x. DOI

Beiyuan J., Tsang D.C., Ok Y.S., Zhang W., Yang X., Baek K., Li X.D. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site. Chemosphere. 2016;159:426–432. doi: 10.1016/j.chemosphere.2016.06.030. PubMed DOI

Ochoa-Loza F.J., Artiola J.F., Maier R.M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J. Environ. Qual. 2001;30:479–485. doi: 10.2134/jeq2001.302479x. PubMed DOI

Zhu Q.Q., Shao C.Y., Zhang Z., Wen X. Saponin biosurfactant-enhanced flushing for the removal of heavy metals from soils. Acta Sci. Circumstantiae. 2010;30:2491–2498.

Cruz B.H., Díaz-Cruz J.M., Ariño C., Esteban M. Heavy metal binding by tannic acid: A voltammetric study. Electroanalysis. 2000;12:1130–1137. doi: 10.1002/1521-4109(200010)12:14<1130::AID-ELAN1130>3.0.CO;2-7. DOI

Mulligan C.N., Yong R.N., Gibbs B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001;60:193–207. doi: 10.1016/S0013-7952(00)00101-0. DOI

Gusiatin Z.M., Bułkowska K., Pokój T. Tannic acid as a cost-effective substitute for saponin in soil remediation. Environ. Biotechnol. 2014;10:66–72. doi: 10.14799/ebms240. DOI

Hajimohammadi R., Amani H., Soltani H. Synergistic Effect of Rhamnolipid and Saponin Biosurfactants on Removal of Heavy Metals from Oil Contaminated Soils. Tenside Surfactants Deterg. 2020;57:109–114. doi: 10.3139/113.110672. DOI

Wei M., Chen J., Wang X. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks. Chemosphere. 2016;156:252–261. doi: 10.1016/j.chemosphere.2016.04.106. PubMed DOI

Gusiatin Z.M., Klimiuk E. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere. 2012;86:383–391. doi: 10.1016/j.chemosphere.2011.10.027. PubMed DOI

da Rocha Junior R.B., Meira H.M., Almeida D.G., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L.A. Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation. 2019;30:215–233. doi: 10.1007/s10532-018-9833-1. PubMed DOI

Klik B.K., Gusiatin Z.M., Kulikowska D. Simultaneous multi-metal removal from soil with washing agents of waste, plant and microbial origin. Soil Sediment Contam. 2019;28:773–791. doi: 10.1080/15320383.2019.1663150. DOI

Sun W., Zhu B., Yang F., Dai M., Sehar S., Peng C., Ali I., Naz I. Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. Chemosphere. 2021;265:129090. doi: 10.1016/j.chemosphere.2020.129090. PubMed DOI

Gusiatin Z.M. Tannic acid and saponin for removing arsenic from brownfield soils: Mobilization, distribution and speciation. J. Environ. Sci. 2014;26:855–864. doi: 10.1016/S1001-0742(13)60534-3. PubMed DOI

Gusiatin Z.M., Klik B., Kulikowska D. Tannic acid for remediation of historically arsenic-contaminated soils. Environ. Technol. 2019;40:1050–1061. doi: 10.1080/09593330.2017.1417490. PubMed DOI

Gusiatin Z.M. Surface tension technique as a strategy to evaluate the adsorption of biosurfactants used in soil remediation. Environ. Biotechnol. 2015;11:27–33. doi: 10.14799/ebms267. DOI

Ostrowska A., Gawlinski S., Szczubiałka Z. Analysis of Soils and Plants. Institute of Environmental Protection—National Research Institute; Warsaw, Poland: 1991. (In Polish)

Pueyo M., Mateu J., Rigol A., Vidal M., López-Sánchez J.F., Rauret G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008;152:330–341. doi: 10.1016/j.envpol.2007.06.020. PubMed DOI

OME Ordinance of the Minister of Environment on soil and ground quality standards. J. Law. 2016;395:1–86. (In Polish)

Hong K.J., Tokunaga S., Kajiuchi T. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere. 2002;49:379–387. doi: 10.1016/S0045-6535(02)00321-1. PubMed DOI

Klik B.K., Gusiatin Z.M., Kulikowska D. Suitability of environmental indices in assessment of soil remediation with conventional and next generation washing agents. Sci. Report. 2020;10:20586. doi: 10.1038/s41598-020-77312-7. PubMed DOI PMC

Nisa A.K., Rumhayati B., Kurniawan A. Geochemical Distribution of Copper and Zinc in the Aquatic Sediment of Nyolo Spring Water at Karangploso Malang East Java. J. Pure App. Chem. Res. 2019;8:62–72. doi: 10.21776/ub.jpacr.2019.008.01.443. DOI

Yong R.N., Mulligan C.N. Natural Attenuation of Contaminants in Soils. Lewis Publishers, CRC Press LLC; Boca Raton, FL, USA: 2004.

Ash C., Tejnecký V., Šebek O., Houška J., Chala A.T., Drahota P., Drábek O. Redistribution of cadmium and lead fractions in contaminated soil samples due to experimental leaching. Geoderma. 2015;241:126–135. doi: 10.1016/j.geoderma.2014.11.022. DOI

Bradl H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004;277:1–18. doi: 10.1016/j.jcis.2004.04.005. PubMed DOI

Filgueiras A.V., Lavilla I., Bendicho C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 2002;4:823–857. doi: 10.1039/b207574c. PubMed DOI

Nemati K., Bakar N.K.A., Abas M.R., Sobhanzadeh E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011;192:402–410. doi: 10.1016/j.jhazmat.2011.05.039. PubMed DOI

Barman M., Datta S.P., Rattan R.K., Meena M.C. Chemical fractions and bioavailability of nickel in alluvial soils. Plant Soil Environ. 2015;61:17–22. doi: 10.17221/613/2014-PSE. DOI

Kulikowska D., Klik B.K., Gusiatin Z.M., Jabłoński R. Sewage sludge can provide a washing agent for remediation of soil from a metallurgical area. Catena. 2019;173:22–28. doi: 10.1016/j.catena.2018.09.049. DOI

Radziemska M., Gusiatin Z.M., Cydzik-Kwiatkowska A., Cerdà A., Pecina V., Bęś A., Datta R., Majewski G., Mazur Z., Dzięcioł J., et al. Insight into metal immobilization and microbial community structure in soil from a steel disposal dump phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere. 2021;272:129576. doi: 10.1016/j.chemosphere.2021.129576. PubMed DOI

Lopes G., Costa E.T.S., Penido E.S., Sparks D.L., Guilherme L.R.G. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil. Environ. Sci. Pollut. Res. 2015;22:13442–13452. doi: 10.1007/s11356-015-4613-5. PubMed DOI

Maity J.P., Huang Y.M., Hsu C.M., Wu C.I., Chen C.C., Li C.Y., Jean J.S., Chang Y.F., Chen C.Y. Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: A comparative effectiveness assessment. Chemosphere. 2013;92:1286–1293. doi: 10.1016/j.chemosphere.2013.04.060. PubMed DOI

Tang J., He J., Liu T., Xin X. Removal of heavy metals with sequential sludge washing techniques using saponin: Optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism. RSC Adv. 2017;7:33385–33401. doi: 10.1039/C7RA04284A. DOI

Gusiatin Z.M., Radziemska M., Żochowska A. Sequential soil washing with mixed biosurfactants is suitable for simultaneous removal of multi-metals from soils with different properties, pollution levels and ages. Environ. Earth Sci. 2019;78:529. doi: 10.1007/s12665-019-8542-3. DOI

Ye M., Sun M., Kengara F.O., Wang J., Ni N., Wang L., Song Y., Yang X., Li H., Hu F., et al. Evaluation of soil washing process with carboxymethyl-β-cyclodextrin and carboxymethyl chitosan for recovery of PAHs/heavy metals/fluorine from metallurgic plant site. J. Environ. Sci. 2014;26:1661–1672. doi: 10.1016/j.jes.2014.06.006. PubMed DOI

Cay S., Uyanik A., Engin M.S., Kutbay H.G. Effect of EDTA and tannic acid on the removal of Cd, Ni, Pb and Cu from artificially contaminated soil by Althaea rosea Cavan. Int. J. Phytoremediat. 2015;17:568–574. doi: 10.1080/15226514.2014.935285. PubMed DOI

Lopes C.S.C., Teixeira D.B., Braz B.F., Santelli R.E., de Castilho L.V.A., Gomez J.G.C., Castro R.P.V., Seldin L., Freire D.M.G. Application of rhamnolipid surfactant for remediation of toxic metals of long-and short-term contamination sites. Int. J. Environ. Sci. Technol. 2021;18:575–588. doi: 10.1007/s13762-020-02889-5. DOI

El Zeftawy M.M., Mulligan C.N. Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF) Sep. Purif. Technol. 2011;77:120–127. doi: 10.1016/j.seppur.2010.11.030. DOI

Chen M., Dong C., Penfold J., Thomas R.K., Smyth T.J., Perfumo A., Marchant R., Banat I.M., Stevenson P.S., Parry A., et al. Influence of calcium ions on rhamnolipid and rhamnolipid/anionic surfactant adsorption and self-assembly. Langmuir. 2013;29:3912–3923. doi: 10.1021/la400432v. PubMed DOI

Özdemir G., Peker S., Helvaci S.S. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloids Surf. 2004;234:135–143. doi: 10.1016/j.colsurfa.2003.10.024. PubMed DOI

Sachdev D.P., Cameotra S.S. Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 2013;97:1005–1016. doi: 10.1007/s00253-012-4641-8. PubMed DOI PMC

Aşçı Y., Nurbaş M., Açıkel Y.S. Removal of zinc ions from a soil component Na-feldspar by a rhamnolipid biosurfactant. Desalination. 2008;223:361–365. doi: 10.1016/j.desal.2007.01.205. DOI

Tang J., He J., Qiu Z., Xin X. Metal removal effectiveness, fractions, and binding intensity in the sludge during the multiple washing steps using the combined rhamnolipid and saponin. J. Soils Sediments. 2019;19:1286–1296. doi: 10.1007/s11368-018-2106-0. DOI

Li Z., Liu D., Huang W., Wei X., Sun Y. Removing Cu and Zn from pig manure via the leaching method with EDTA, saponin, and their mixture. JAES. 2019;38:220–228. doi: 10.11654/jaes.2018-0309. DOI

Ochoa-Loza F.J., Noordman W.H., Jannsen D.B., Brusseau M.L., Maier R.M. Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil. Chemosphere. 2007;66:1634–1642. doi: 10.1016/j.chemosphere.2006.07.068. PubMed DOI

Halvorson J.J., Gollany H.T., Kennedy A.C., Hagerman A.E., Gonzalez J.M., Wuest S.B. Sorption of tannin and related phenolic compounds and effects on extraction of soluble-N in soil amended with several carbon sources. Agriculture. 2012;2:52–72. doi: 10.3390/agriculture2010052. DOI

Zhou W., Wang X., Chen C., Zhu L. Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids Surf. A Physicochem. Eng. Asp. 2013;425:122–128. doi: 10.1016/j.colsurfa.2013.02.055. DOI

Yost J.L., Hartemink A.E. Soil organic carbon in sandy soils: A review. Adv. Agron. 2019;158:217–310. doi: 10.1016/bs.agron.2019.07.004. DOI

Gusiatin Z.M., Kaal J., Wasilewska A., Kumpiene J., Radziemska M. Short-Term Soil Flushing with Tannic Acid and Its Effect on Metal Mobilization and Selected Properties of Calcareous Soil. Int. J. Environ. Res. Public Health. 2021;18:5698. doi: 10.3390/ijerph18115698. PubMed DOI PMC

Halvorson J.J., Gonzalez J.M., Hagerman A.E., Smith J.L. Sorption of tannin and related phenolic compounds and effects on soluble-N in soil. Soil Biol. Biochem. 2009;41:2002–2010. doi: 10.1016/j.soilbio.2009.07.006. DOI

Dhanarajan G., Sen R. Cost analysis of biosurfactant production from a scientist’s perspective. Biosurfactants. 2014;159:153–161. doi: 10.1201/b17599-12. DOI

Lang S., Wullbrandt D. Rhamnose lipids–biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 1999;51:22–32. doi: 10.1007/s002530051358. PubMed DOI

Gusiatin Z.M. Fe-modified Clinoptilolite is effective to recover plant biosurfactants used for removing arsenic from soil. Clean Soil Air Water. 2015;43:1224–1231. doi: 10.1002/clen.201400543. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...