Remediation of Smelter Contaminated Soil by Sequential Washing Using Biosurfactants
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34948484
PubMed Central
PMC8701185
DOI
10.3390/ijerph182412875
PII: ijerph182412875
Knihovny.cz E-resources
- Keywords
- copper, lead, organic carbon, remediation, rhamnolipids, saponin, soil, tannic acid,
- MeSH
- Soil Pollutants * analysis MeSH
- Soil MeSH
- Environmental Restoration and Remediation * MeSH
- Metals, Heavy * analysis MeSH
- Environmental Pollution MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Poland MeSH
- Names of Substances
- Soil Pollutants * MeSH
- Soil MeSH
- Metals, Heavy * MeSH
This paper presents experimental results from the use of biosurfactants in the remediation of a soil from a smelter in Poland. In the soil, concentrations of Cu (1659.1 mg/kg) and Pb (290.8 mg/kg) exceeded the limit values. Triple batch washing was tested as a soil treatment. Three main variants were used, each starting with a different plant-derived (saponin, S; tannic acid, T) or microbial (rhamnolipids, R) biosurfactant solution in the first washing, followed by 9 different sequences using combinations of the tested biosurfactants (27 in total). The efficiency of the washing was determined based on the concentration of metal removed after each washing (CR), the cumulative removal efficiency (Ecumulative) and metal stability (calculated as the reduced partition index, Ir, based on the metal fractions from BCR sequential extraction). The type of biosurfactant sequence influenced the CR values. The variants that began with S and R had the highest average Ecumulative for Cu and Pb, respectively. The Ecumulative value correlated very strongly (r > 0.8) with the stability of the residual metals in the soil. The average Ecumulative and stability of Cu were the highest, 87.4% and 0.40, respectively, with the S-S-S, S-S-T, S-S-R and S-R-T sequences. Lead removal and stability were the highest, 64-73% and 0.36-0.41, respectively, with the R-R-R, R-R-S, R-S-R and R-S-S sequences. Although the loss of biosurfactants was below 10% after each washing, sequential washing with biosurfactants enriched the soil with external organic carbon by an average of 27-fold (S-first variant), 24-fold (R first) or 19-fold (T first). With regard to environmental limit values, metal stability and organic carbon resources, sequential washing with different biosurfactants is a beneficial strategy for the remediation of smelter-contaminated soil with given properties.
See more in PubMed
Khan S., Naushad M., Lima E.C., Zhang S., Shaheen S.M., Rinklebe J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021;417:126039. doi: 10.1016/j.jhazmat.2021.126039. PubMed DOI
Mishra S., Lin Z., Pang S., Zhang Y., Bhatt P., Chen S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J. Hazard. Mater. 2021;418:126253. doi: 10.1016/j.jhazmat.2021.126253. PubMed DOI
Yang Z.H., Dong C.D., Chen C.W., Sheu Y.T., Kao C.M. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils. Environ. Sci. Pollut. Res. 2018;25:5231–5242. doi: 10.1007/s11356-017-9235-7. PubMed DOI
Gusiatin Z.M., Kulikowska D., Klik B. New-generation washing agents in remediation of metal-polluted soils and methods for washing effluent treatment: A review. Int. J. Environ. Res. Public Health. 2020;17:6220. doi: 10.3390/ijerph17176220. PubMed DOI PMC
De Almeida D.G., Soares Da Silva R.D.C.F., Luna J.M., Rufino R.D., Santos V.A., Banat I.M., Sarubbo L.A. Biosurfactants: Promising molecules for petroleum biotechnology advances. Front. Microbiol. 2016;7:1718. doi: 10.3389/fmicb.2016.01718. PubMed DOI PMC
Mulligan C.N. Sustainable remediation of contaminated soil using biosurfactants. Front. Bioeng. Biotechnol. 2021;9:195. doi: 10.3389/fbioe.2021.635196. PubMed DOI PMC
Jimoh A.A., Lin J. Biotechnological applications of Paenibacillus sp. D9 lipopeptide biosurfactant produced in low-cost substrates. Appl. Biochem. Biotechnol. 2020;191:921–941. doi: 10.1007/s12010-020-03246-5. PubMed DOI
Liu Z., Li Z., Zhong H., Zeng G., Liang Y., Chen M., Wu Z., Zhou Y., Yu M., Shao B. Recent advances in the environmental applications of biosurfactant saponins: A review. J. Environ. Chem. Eng. 2017;5:6030–6038. doi: 10.1016/j.jece.2017.11.021. DOI
Tsang D.C., Olds W.E., Weber P. Residual leachability of CCA-contaminated soil after treatment with biodegradable chelating agents and lignite-derived humic substances. J. Soil. Sediment. 2013;13:895–905. doi: 10.1007/s11368-013-0662-x. DOI
Beiyuan J., Tsang D.C., Ok Y.S., Zhang W., Yang X., Baek K., Li X.D. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site. Chemosphere. 2016;159:426–432. doi: 10.1016/j.chemosphere.2016.06.030. PubMed DOI
Ochoa-Loza F.J., Artiola J.F., Maier R.M. Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J. Environ. Qual. 2001;30:479–485. doi: 10.2134/jeq2001.302479x. PubMed DOI
Zhu Q.Q., Shao C.Y., Zhang Z., Wen X. Saponin biosurfactant-enhanced flushing for the removal of heavy metals from soils. Acta Sci. Circumstantiae. 2010;30:2491–2498.
Cruz B.H., Díaz-Cruz J.M., Ariño C., Esteban M. Heavy metal binding by tannic acid: A voltammetric study. Electroanalysis. 2000;12:1130–1137. doi: 10.1002/1521-4109(200010)12:14<1130::AID-ELAN1130>3.0.CO;2-7. DOI
Mulligan C.N., Yong R.N., Gibbs B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001;60:193–207. doi: 10.1016/S0013-7952(00)00101-0. DOI
Gusiatin Z.M., Bułkowska K., Pokój T. Tannic acid as a cost-effective substitute for saponin in soil remediation. Environ. Biotechnol. 2014;10:66–72. doi: 10.14799/ebms240. DOI
Hajimohammadi R., Amani H., Soltani H. Synergistic Effect of Rhamnolipid and Saponin Biosurfactants on Removal of Heavy Metals from Oil Contaminated Soils. Tenside Surfactants Deterg. 2020;57:109–114. doi: 10.3139/113.110672. DOI
Wei M., Chen J., Wang X. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks. Chemosphere. 2016;156:252–261. doi: 10.1016/j.chemosphere.2016.04.106. PubMed DOI
Gusiatin Z.M., Klimiuk E. Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere. 2012;86:383–391. doi: 10.1016/j.chemosphere.2011.10.027. PubMed DOI
da Rocha Junior R.B., Meira H.M., Almeida D.G., Rufino R.D., Luna J.M., Santos V.A., Sarubbo L.A. Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation. 2019;30:215–233. doi: 10.1007/s10532-018-9833-1. PubMed DOI
Klik B.K., Gusiatin Z.M., Kulikowska D. Simultaneous multi-metal removal from soil with washing agents of waste, plant and microbial origin. Soil Sediment Contam. 2019;28:773–791. doi: 10.1080/15320383.2019.1663150. DOI
Sun W., Zhu B., Yang F., Dai M., Sehar S., Peng C., Ali I., Naz I. Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. Chemosphere. 2021;265:129090. doi: 10.1016/j.chemosphere.2020.129090. PubMed DOI
Gusiatin Z.M. Tannic acid and saponin for removing arsenic from brownfield soils: Mobilization, distribution and speciation. J. Environ. Sci. 2014;26:855–864. doi: 10.1016/S1001-0742(13)60534-3. PubMed DOI
Gusiatin Z.M., Klik B., Kulikowska D. Tannic acid for remediation of historically arsenic-contaminated soils. Environ. Technol. 2019;40:1050–1061. doi: 10.1080/09593330.2017.1417490. PubMed DOI
Gusiatin Z.M. Surface tension technique as a strategy to evaluate the adsorption of biosurfactants used in soil remediation. Environ. Biotechnol. 2015;11:27–33. doi: 10.14799/ebms267. DOI
Ostrowska A., Gawlinski S., Szczubiałka Z. Analysis of Soils and Plants. Institute of Environmental Protection—National Research Institute; Warsaw, Poland: 1991. (In Polish)
Pueyo M., Mateu J., Rigol A., Vidal M., López-Sánchez J.F., Rauret G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008;152:330–341. doi: 10.1016/j.envpol.2007.06.020. PubMed DOI
OME Ordinance of the Minister of Environment on soil and ground quality standards. J. Law. 2016;395:1–86. (In Polish)
Hong K.J., Tokunaga S., Kajiuchi T. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere. 2002;49:379–387. doi: 10.1016/S0045-6535(02)00321-1. PubMed DOI
Klik B.K., Gusiatin Z.M., Kulikowska D. Suitability of environmental indices in assessment of soil remediation with conventional and next generation washing agents. Sci. Report. 2020;10:20586. doi: 10.1038/s41598-020-77312-7. PubMed DOI PMC
Nisa A.K., Rumhayati B., Kurniawan A. Geochemical Distribution of Copper and Zinc in the Aquatic Sediment of Nyolo Spring Water at Karangploso Malang East Java. J. Pure App. Chem. Res. 2019;8:62–72. doi: 10.21776/ub.jpacr.2019.008.01.443. DOI
Yong R.N., Mulligan C.N. Natural Attenuation of Contaminants in Soils. Lewis Publishers, CRC Press LLC; Boca Raton, FL, USA: 2004.
Ash C., Tejnecký V., Šebek O., Houška J., Chala A.T., Drahota P., Drábek O. Redistribution of cadmium and lead fractions in contaminated soil samples due to experimental leaching. Geoderma. 2015;241:126–135. doi: 10.1016/j.geoderma.2014.11.022. DOI
Bradl H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004;277:1–18. doi: 10.1016/j.jcis.2004.04.005. PubMed DOI
Filgueiras A.V., Lavilla I., Bendicho C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 2002;4:823–857. doi: 10.1039/b207574c. PubMed DOI
Nemati K., Bakar N.K.A., Abas M.R., Sobhanzadeh E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011;192:402–410. doi: 10.1016/j.jhazmat.2011.05.039. PubMed DOI
Barman M., Datta S.P., Rattan R.K., Meena M.C. Chemical fractions and bioavailability of nickel in alluvial soils. Plant Soil Environ. 2015;61:17–22. doi: 10.17221/613/2014-PSE. DOI
Kulikowska D., Klik B.K., Gusiatin Z.M., Jabłoński R. Sewage sludge can provide a washing agent for remediation of soil from a metallurgical area. Catena. 2019;173:22–28. doi: 10.1016/j.catena.2018.09.049. DOI
Radziemska M., Gusiatin Z.M., Cydzik-Kwiatkowska A., Cerdà A., Pecina V., Bęś A., Datta R., Majewski G., Mazur Z., Dzięcioł J., et al. Insight into metal immobilization and microbial community structure in soil from a steel disposal dump phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere. 2021;272:129576. doi: 10.1016/j.chemosphere.2021.129576. PubMed DOI
Lopes G., Costa E.T.S., Penido E.S., Sparks D.L., Guilherme L.R.G. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil. Environ. Sci. Pollut. Res. 2015;22:13442–13452. doi: 10.1007/s11356-015-4613-5. PubMed DOI
Maity J.P., Huang Y.M., Hsu C.M., Wu C.I., Chen C.C., Li C.Y., Jean J.S., Chang Y.F., Chen C.Y. Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: A comparative effectiveness assessment. Chemosphere. 2013;92:1286–1293. doi: 10.1016/j.chemosphere.2013.04.060. PubMed DOI
Tang J., He J., Liu T., Xin X. Removal of heavy metals with sequential sludge washing techniques using saponin: Optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism. RSC Adv. 2017;7:33385–33401. doi: 10.1039/C7RA04284A. DOI
Gusiatin Z.M., Radziemska M., Żochowska A. Sequential soil washing with mixed biosurfactants is suitable for simultaneous removal of multi-metals from soils with different properties, pollution levels and ages. Environ. Earth Sci. 2019;78:529. doi: 10.1007/s12665-019-8542-3. DOI
Ye M., Sun M., Kengara F.O., Wang J., Ni N., Wang L., Song Y., Yang X., Li H., Hu F., et al. Evaluation of soil washing process with carboxymethyl-β-cyclodextrin and carboxymethyl chitosan for recovery of PAHs/heavy metals/fluorine from metallurgic plant site. J. Environ. Sci. 2014;26:1661–1672. doi: 10.1016/j.jes.2014.06.006. PubMed DOI
Cay S., Uyanik A., Engin M.S., Kutbay H.G. Effect of EDTA and tannic acid on the removal of Cd, Ni, Pb and Cu from artificially contaminated soil by Althaea rosea Cavan. Int. J. Phytoremediat. 2015;17:568–574. doi: 10.1080/15226514.2014.935285. PubMed DOI
Lopes C.S.C., Teixeira D.B., Braz B.F., Santelli R.E., de Castilho L.V.A., Gomez J.G.C., Castro R.P.V., Seldin L., Freire D.M.G. Application of rhamnolipid surfactant for remediation of toxic metals of long-and short-term contamination sites. Int. J. Environ. Sci. Technol. 2021;18:575–588. doi: 10.1007/s13762-020-02889-5. DOI
El Zeftawy M.M., Mulligan C.N. Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF) Sep. Purif. Technol. 2011;77:120–127. doi: 10.1016/j.seppur.2010.11.030. DOI
Chen M., Dong C., Penfold J., Thomas R.K., Smyth T.J., Perfumo A., Marchant R., Banat I.M., Stevenson P.S., Parry A., et al. Influence of calcium ions on rhamnolipid and rhamnolipid/anionic surfactant adsorption and self-assembly. Langmuir. 2013;29:3912–3923. doi: 10.1021/la400432v. PubMed DOI
Özdemir G., Peker S., Helvaci S.S. Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloids Surf. 2004;234:135–143. doi: 10.1016/j.colsurfa.2003.10.024. PubMed DOI
Sachdev D.P., Cameotra S.S. Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 2013;97:1005–1016. doi: 10.1007/s00253-012-4641-8. PubMed DOI PMC
Aşçı Y., Nurbaş M., Açıkel Y.S. Removal of zinc ions from a soil component Na-feldspar by a rhamnolipid biosurfactant. Desalination. 2008;223:361–365. doi: 10.1016/j.desal.2007.01.205. DOI
Tang J., He J., Qiu Z., Xin X. Metal removal effectiveness, fractions, and binding intensity in the sludge during the multiple washing steps using the combined rhamnolipid and saponin. J. Soils Sediments. 2019;19:1286–1296. doi: 10.1007/s11368-018-2106-0. DOI
Li Z., Liu D., Huang W., Wei X., Sun Y. Removing Cu and Zn from pig manure via the leaching method with EDTA, saponin, and their mixture. JAES. 2019;38:220–228. doi: 10.11654/jaes.2018-0309. DOI
Ochoa-Loza F.J., Noordman W.H., Jannsen D.B., Brusseau M.L., Maier R.M. Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil. Chemosphere. 2007;66:1634–1642. doi: 10.1016/j.chemosphere.2006.07.068. PubMed DOI
Halvorson J.J., Gollany H.T., Kennedy A.C., Hagerman A.E., Gonzalez J.M., Wuest S.B. Sorption of tannin and related phenolic compounds and effects on extraction of soluble-N in soil amended with several carbon sources. Agriculture. 2012;2:52–72. doi: 10.3390/agriculture2010052. DOI
Zhou W., Wang X., Chen C., Zhu L. Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids Surf. A Physicochem. Eng. Asp. 2013;425:122–128. doi: 10.1016/j.colsurfa.2013.02.055. DOI
Yost J.L., Hartemink A.E. Soil organic carbon in sandy soils: A review. Adv. Agron. 2019;158:217–310. doi: 10.1016/bs.agron.2019.07.004. DOI
Gusiatin Z.M., Kaal J., Wasilewska A., Kumpiene J., Radziemska M. Short-Term Soil Flushing with Tannic Acid and Its Effect on Metal Mobilization and Selected Properties of Calcareous Soil. Int. J. Environ. Res. Public Health. 2021;18:5698. doi: 10.3390/ijerph18115698. PubMed DOI PMC
Halvorson J.J., Gonzalez J.M., Hagerman A.E., Smith J.L. Sorption of tannin and related phenolic compounds and effects on soluble-N in soil. Soil Biol. Biochem. 2009;41:2002–2010. doi: 10.1016/j.soilbio.2009.07.006. DOI
Dhanarajan G., Sen R. Cost analysis of biosurfactant production from a scientist’s perspective. Biosurfactants. 2014;159:153–161. doi: 10.1201/b17599-12. DOI
Lang S., Wullbrandt D. Rhamnose lipids–biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 1999;51:22–32. doi: 10.1007/s002530051358. PubMed DOI
Gusiatin Z.M. Fe-modified Clinoptilolite is effective to recover plant biosurfactants used for removing arsenic from soil. Clean Soil Air Water. 2015;43:1224–1231. doi: 10.1002/clen.201400543. DOI