The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds

. 2022 Mar 15 ; 426 () : 128084. [epub] 20211216

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34952507

Grantová podpora
P42 ES007381 NIEHS NIH HHS - United States
R01 ES032323 NIEHS NIH HHS - United States

Odkazy

PubMed 34952507
PubMed Central PMC9039345
DOI 10.1016/j.jhazmat.2021.128084
PII: S0304-3894(21)03053-3
Knihovny.cz E-zdroje

The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has broad biological functions. Early after the identification of the AHR, most studies focused on its roles in regulating the expression of drug-metabolizing enzymes and mediating the toxicity of dioxins and dioxin-like compounds (DLCs). Currently, more diverse functions of AHR have been identified, indicating that AHR is not just a dioxin receptor. Dioxins and DLCs occur ubiquitously and have diverse health/ecological risks. Additional research is required to identify both shared and compound-specific mechanisms, especially for emerging DLCs such as polyhalogenated carbazoles (PHCZs), polychlorinated diphenyl sulfides (PCDPSs), and others, of which only a few investigations have been performed at present. Many of the toxic effects of emerging DLCs were observed to be predominantly mediated by the AHR because of their structural similarity as dioxins, and the in vitro TCDD-relative potencies of certain emerging DLC congeners are comparable to or even greater than the WHO-TEFs of OctaCDD, OctaCDF, and most coplanar PCBs. Due to the close relationship between AHR biology and environmental science, this review begins by providing novel insights into AHR signaling (canonical and non-canonical), AHR's biochemical properties (AHR structure, AHR-ligand interaction, AHR-DNA binding), and the variations during AHR transactivation. Then, AHR ligand classification and the corresponding mechanisms are discussed, especially the shared and compound-specific, AHR-mediated effects and mechanisms of emerging DLCs. Accordingly, a series of in vivo and in vitro toxicity evaluation methods based on the AHR signaling pathway are reviewed. In light of current advances, future research on traditional and emerging DLCs will enhance our understanding of their mechanisms, toxicity, potency, and ecological impacts.

Zobrazit více v PubMed

Hahn ME; Karchner SI; Merson RR, Diversity as opportunity: insights from 600 million years of AHR evolution. Curr. Opin. Toxicol 2017, 2, 58–71. PubMed PMC

van den Berg M; Birnbaum LS; Denison MS; De Vito M; Farland W; Feeley M; Fiedler H; Hakansson H; Hanberg A; Haws L, The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci 2006, 93, (2), 223–241. PubMed PMC

Poland A; Glover E; Kende AS, Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J. Biol. Chem 1976, 251, (16), 4936–4946. PubMed

Weijs L; Losada S; Das K; Roosens L; Reijnders PJH; Santos JF; Neels H; Blust R; Covaci A, Biomagnification of naturally-produced methoxylated polybrominated diphenyl ethers (MeO-PBDEs) in harbour seals and harbour porpoises from the Southern North Sea. Environ. Int 2009, 35, (6), 893–899. PubMed

Wu Y; Tan H; Sutton R; Chen D, From sediment to top predators: broad exposure of polyhalogenated carbazoles in San Francisco Bay (U.S.A.). Environ. Sci. Technol 2017, 51, (4), 2038–2046. PubMed

Zhang X; Fang B; Wang T; Liu H; Feng M; Qin L; Zhang R, Tissue-specific bioaccumulation, depuration and metabolism of 4,4′-dichlorodiphenyl sulfide in the freshwater mussel Anodonta woodiana. Sci. Total Environ 2018, 642, 854–863. PubMed

Guo Z; Xie HQ; Zhang P; Luo Y; Xu T; Liu Y; Fu H; Xu L; Valsami-Jones E; Boksa P; Zhao B, Dioxins as potential risk factors for autism spectrum disorder. Environ. Int 2018, 121, 906–915. PubMed

Chen Y; Sha R; Xu L; Xia Y; Liu Y; Li X; Xie HQ; Tang N; Zhao B, 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes migration ability of primary cultured rat astrocytes via aryl hydrocarbon receptor. J. Environ. Sci 2019, 76, 368–376. PubMed

Li Y; Xie HQ; Zhang W; Wei Y; Sha R; Xu L; Zhang J; Jiang Y; Guo TL; Zhao B, Type 3 innate lymphoid cells are altered in colons of C57BL/6 mice with dioxin exposure. Sci. Total Environ 2019, 662, 639–645. PubMed

Ben Hassine S; Ben Ameur W; Eljarrat E; Barceló D; Touil S; Driss MR, Methoxylated polybrominated diphenyl ethers (MeO-PBDE) in human milk from Bizerte, Tunisia. Environ. Res 2015, 138, 32–37. PubMed

Schultz IR; Kuo LJ; Cullinan V; Cade S, Occupational and dietary differences in hydroxylated and methoxylated PBDEs and metals in plasma from Puget Sound, Washington, USA region volunteers. Sci. Total Environ 2020, 714, 136566. PubMed

Wang G; Jiang T; Li S; Hou H; Xiao K; Hu J; Liang S; Liu B; Yang J, Occurrence and exposure risk evaluation of polyhalogenated carbazoles (PHCZs) in drinking water. Sci. Total Environ 2021, 750, 141615. PubMed

Yue S; Zhang T; Shen Q; Song Q; Ji C; Chen Y; Mao M; Kong Y; Chen D; Liu J; Sun Z; Zhao M, Assessment of endocrine-disrupting effects of emerging polyhalogenated carbazoles (PHCZs): In vitro, in silico, and in vivo evidence. Environ. Int 2020, 140, 105729. PubMed

Ma D; Xie HQ; Zhang W; Xue Q; Liu X; Xu L; Ma Y; Bonefeld-Jørgensen EC; Long M; Zhang A; Zhao B, Aryl hydrocarbon receptor activity of polyhalogenated carbazoles and the molecular mechanism. Sci. Total Environ 2019, 687, 516–526. PubMed

Soshilov AA; Motta S; Bonati L; Denison MS, Transitional states in ligand-dependent transformation of the aryl hydrocarbon receptor into its DNA-binding form. Int. J. Mol. Sci 2020, 21, (7), 2474. PubMed PMC

Seok S; Lee W; Jiang L; Molugu K; Zheng A; Li Y; Park S; Bradfield CA; Xing Y, Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. PNAS 2017, 114, (21), 5431. PubMed PMC

Andersson P; McGuire J; Rubio C; Gradin K; Whitelaw ML; Pettersson S; Hanberg A; Poellinger L, A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. PNAS 2002, 99, (15), 9990–9995. PubMed PMC

Moura-Alves P; Fae K; Houthuys E; Dorhoi A; Kreuchwig A; Furkert J; Barison N; Diehl A; Munder A; Constant P; Skrahina T; Guhlich-Bornhof U; Klemm M; Koehler A; Bandermann S; Goosmann C; Mollenkopf H; Hurwitz R; Brinkmann V; Fillatreau S; Daffe M; Tuemmler B; Kolbe M; Oschkinat H; Krause G; Kaufmann SHE, AhR sensing of bacterial pigments regulates antibacterial defence. Nature 2014, 512, (7515), 387–392. PubMed

Bessede A; Gargaro M; Pallotta MT; Matino D; Servillo G; Brunacci C; Bicciato S; Mazza EMC; Macchiarulo A; Vacca C; Iannitti R; Tissi L; Volpi C; Belladonna ML; Orabona C; Bianchi R; Lanz TV; Platten M; Della Fazia MA; Piobbico D; Zelante T; Funakoshi H; Nakamura T; Gilot D; Denison MS; Guillemin GJ; DuHadaway JB; Prendergast GC; Metz R; Geffard M; Boon L; Pirro M; Iorio A; Veyret B; Romani L; Grohmann U; Fallarino F; Puccetti P, Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 2014, 511, (7508), 184–190. PubMed PMC

Mulero-Navarro S; Fernandez-Salguero PM, New trends in aryl hydrocarbon receptor biology. Front. Cell Dev. Biol 2016, 4, 45. PubMed PMC

Hahn ME; Sadler KC, Casting a wide net: use of diverse model organisms to advance toxicology. Dis. Model Mech 2020, 13, (4). PubMed PMC

Wirgin I; Roy NK; Loftus M; Chambers RC; Franks DG; Hahn ME, Mechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River. Science 2011, 331, (6022), 1322–1325. PubMed PMC

Farmahin R; Manning GE; Crump D; Wu D; Mundy LJ; Jones SP; Hahn ME; Karchner SI; Giesy JP; Bursian SJ; Zwiernik MJ; Fredricks TB; Kennedy SW, Amino acid sequence of the ligand-binding domain of the aryl hydrocarbon receptor 1 predicts sensitivity of wild birds to effects of dioxin-like compounds. Toxicol. Sci 2013, 131, (1), 139–52. PubMed

Lavine JA; Rowatt AJ; Klimova T; Whitington AJ; Dengler E; Beck C; Powell WH, Aryl hydrocarbon receptors in the frog Xenopus laevis: two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Sci 2005, 88, (1), 60–72. PubMed PMC

Larsson M; van den Berg M; Brenerová P; van Duursen MB; van Ede KI; Lohr C; Luecke-Johansson S; Machala M; Neser S; Pěnčíková K; Poellinger L; Schrenk D; Strapáčová S; Vondráček J; Andersson PL, Consensus toxicity factors for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls combining in silico models and extensive in vitro screening of AhR-mediated effects in human and rodent cells. Chem. Res. Toxicol 2015, 28, (4), 641–650. PubMed

Zhang S; Li S; Zhou Z; Fu H; Xu L; Xie HQ; Zhao B, Development and application of a novel bioassay system for dioxin determination and aryl hydrocarbon receptor activation evaluation in ambient-air samples. Environ. Sci. Technol 2018, 52, (5), 2926–2933. PubMed

Ji C; Yan L; Chen Y; Yue S; Dong Q; Chen J; Zhao M, Evaluation of the developmental toxicity of 2,7-dibromocarbazole to zebrafish based on transcriptomics assay. J. Hazard. Mater 2019, 368, 514–522. PubMed

Faber SC; Giani Tagliabue S; Bonati L; Denison MS, The cellular and molecular determinants of naphthoquinone-dependent activation of the aryl hydrocarbon receptor. Int. J. Mol. Sci 2020, 21, (11), 4111. PubMed PMC

Aranguren-Abadía L; Lille-Langøy R; Madsen AK; Karchner SI; Franks DG; Yadetie F; Hahn ME; Goksøyr A; Karlsen OA, Molecular and functional properties of the Atlantic cod (Gadus morhua) aryl hydrocarbon receptors Ahr1a and Ahr2a. Environ. Sci. Technol 2020, 54, (2), 1033–1044. PubMed PMC

Sakurai S; Shimizu T; Ohto U, The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription. J. Biol. Chem 2017, 292, (43), 17609–17616. PubMed PMC

Powell-Coffman JA; Bradfield CA; Wood WB, Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. PNAS 1998, 95, (6), 2844–9. PubMed PMC

Butler RA; Kelley ML; Powell WH; Hahn ME; Van Beneden RJ, An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and beta-naphthoflavone binding. Gene 2001, 278, (1-2), 223–34. PubMed

Powell-Coffman JA; Qin H, Invertebrate AHR Homologs: Ancestral Functions in Sensory Systems. In The AH Receptor in Biology and Toxicology, 2011; pp 405–411.

Denison MS; Faber SC, And now for something completely different: diversity in ligand-dependent activation of ah receptor responses. Curr. Opin. Toxicol 2017, 2, 124–131. PubMed PMC

Wright EJ; De Castro KP; Joshi AD; Elferink CJ, Canonical and non-canonical aryl hydrocarbon receptor signaling pathways. Curr. Opin. Toxicol 2017, 2, 87–92. PubMed PMC

Jackson DP; Joshi AD; Elferink CJ, Ah receptor pathway intricacies; signaling through diverse protein partners and DNA-motifs. Toxicol. Res 2015, 4, (5), 1143–1158. PubMed PMC

Ge NL; Elferink CJ, A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle. J. Biol. Chem 1998, 273, (35), 22708–22713. PubMed

Soshilov A; Denison MS, Role of the Per/Arnt/Sim domains in ligand-dependent transformation of the aryl hydrocarbon receptor. J. Biol. Chem 2008, 283, (47), 32995–33005. PubMed PMC

Alessandro P; Denison MS; Yujuan S; Soshilov AA; Laura B, Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis. Biochemistry 2007, 46, (3), 696. PubMed PMC

Bisson WH; Koch DC; O’Donnell EF; Khalil SM; Kerkvliet NI; Tanguay RL; Abagyan R; Kolluri SK, Modeling of the aryl hydrocarbon receptor (AhR) ligand binding domain and its utility in virtual ligand screening to predict new AhR ligands. J. Med. Chem 2009, 52, (18), 5635–41. PubMed PMC

Giani Tagliabue S; Faber SC; Motta S; Denison MS; Bonati L, Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Sci. Rep 2019, 9, (1), 10693. PubMed PMC

Zhang W; Xie HQ; Li Y; Zou X; Xu L; Ma D; Li J; Ma Y; Jin T; Hahn ME; Zhao B, Characterization of the aryl hydrocarbon receptor (AhR) pathway in Anabas testudineus and mechanistic exploration of the reduced sensitivity of AhR2a. Environ. Sci. Technol 2019, 53, (21), 12803–12811. PubMed PMC

Pohjanvirta R; Wong JM; Li W; Harper PA; Tuomisto J; Okey AB, Point mutation in intron sequence causes altered carboxyl-terminal structure in the aryl hydrocarbon receptor of the most 2,3,7,8-tetrachlorodibenzo-p-dioxin-resistant rat strain. Mol. Pharmacol 1998, 54, (1), 86–93. PubMed

Korkalainen M; Tuomisto J; Pohjanvirta R, Restructured transactivation domain in hamster AH receptor. Biochem. Biophys. Res. Commun 2000, 273, (1), 272–81. PubMed

Riddell N; Jin UH; Safe S; Cheng Y; Chittim B; Konstantinov A; Parette R; Pena-Abaurrea M; Reiner EJ; Poirier D; Stefanac T; McAlees AJ; McCrindle R, Characterization and biological potency of mono- to tetra-halogenated carbazoles. Environ. Sci. Technol 2015, 49, (17), 10658–10666. PubMed

Kopec AK; Burgoon LD; Ibrahim-Aibo D; Burg AR; Lee AW; Tashiro C; Potter D; Sharratt B; Harkema JR; Rowlands JC; Budinsky RA; Zacharewski TR, Automated dose-response analysis and comparative toxicogenomic evaluation of the hepatic effects elicited by TCDD, TCDF, and PCB126 in C57BL/6 mice. Toxicol. Sci 2010, 118, (1), 286–297. PubMed PMC

Zhang S; Rowlands C; Safe S, Ligand-dependent interactions of the Ah receptor with coactivators in a mammalian two-hybrid assay. Toxicol. Appl. Pharmacol 2008, 227, (2), 196–206. PubMed PMC

Josyula N; Andersen ME; Kaminski NE; Dere E; Zacharewski TR; Bhattacharya S, Gene co-regulation and co-expression in the aryl hydrocarbon receptor-mediated transcriptional regulatory network in the mouse liver. Arch. Toxicol 2020, 94, (1), 113–126. PubMed

Vogel CF; Sciullo E; Li W; Wong P; Lazennec G; Matsumura F, RelB, a new partner of aryl hydrocarbon receptor-mediated transcription. Mol. Endocrinol 2007, 21, (12), 2941–2955. PubMed PMC

Jackson DP; Li H; Mitchell KA; Joshi AD; Elferink CJ, Ah receptor–mediated suppression of liver regeneration through NC-XRE–driven p21Cip1 expression. Mol. Pharmacol 2014, 85, (4), 533–541. PubMed PMC

Ohtake F; Takeyama K; Matsumoto T; Kitagawa H; Yamamoto Y; Nohara K; Tohyama C; Krust A; Mimura J; Chambon P; Yanagisawa J; Fujii-Kuriyama Y; Kato S, Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 2003, 423, (6939), 545–550. PubMed

Watabe Y; Nazuka N; Tezuka M; Shimba S, Aryl hydrocarbon receptor functions as a potent coactivator of E2F1-dependent trascription activity. Biol. Pharm. Bull 2010, 33, (3), 389–397. PubMed

Ohtake F; Baba A; Takada I; Okada M; Iwasaki K; Miki H; Takahashi S; Kouzmenko A; Nohara K; Chiba T; Fujii-Kuriyama Y; Kato S, Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 2007, 446, (7135), 562–566. PubMed

Jin UH; Karki K; Kim SB; Safe S, Inhibition of pancreatic cancer Panc1 cell migration by omeprazole is dependent on aryl hydrocarbon receptor activation of JNK. Biochem. Biophys. Res. Commun 2018, 501, (3), 751–757. PubMed PMC

Zhu J; Luo L; Tian L; Yin S; Ma X; Cheng S; Tang W; Yu J; Ma W; Zhou X; Fan X; Yang X; Yan J; Xu X; Lv CZ; Liang H, Aryl hydrocarbon receptor promotes IL-10 expression in inflammatory macrophages through Src-STAT3 signaling pathway. Front. Immunol 2018, 9. PubMed PMC

Brinchmann BC; Le Ferrec E; Podechard N; Lagadic-Gossmann D; Shoji KF; Penna A; Kukowski K; Kubátová A; Holme JA; Øvrevik J, Lipophilic chemicals from diesel exhaust particles trigger calcium response in human endothelial cells via aryl hydrocarbon receptor non-genomic signalling. Int. J. Mol. Sci 2018, 19, (5), 1429. PubMed PMC

Chen Y; Xie HQ; Sha R; Xu T; Zhang S; Fu H; Xia Y; Liu Y; Xu L; Zhao B, 2,3,7,8-Tetrachlorodibenzo-p-dioxin and up-regulation of neurofilament expression in neuronal cells: Evaluation of AhR and MAPK pathways. Environ. Int 2020, 134, 105193. PubMed

Assefa EG; Yan Q; Gezahegn SB; Salissou MTM; He S; Wu N; Zuo X; Ying C, Role of resveratrol on indoxyl sulfate-induced endothelial hyperpermeability via aryl hydrocarbon receptor (AHR)/Src-dependent pathway. Oxid. Med. Cell Longev 2019, 2019, 5847040. PubMed PMC

Henry EC; Gasiewicz TA, Agonist but not antagonist ligands induce conformational change in the mouse aryl hydrocarbon receptor as detected by partial proteolysis. Mol. Pharmacol 2003, 63, (2), 392–400. PubMed

Faber SC; Soshilov AA; Giani Tagliabue S; Bonati L; Denison MS, Comparative in vitro and in silico analysis of the selectivity of indirubin as a human ah receptor agonist. Int. J. Mol. Sci 2018, 19, (9), 2692. PubMed PMC

Sogawa K; Fujisawa-Sehara A; Yamane M; Fujii-Kuriyama Y, Location of regulatory elements responsible for drug induction in the rat cytochrome P-450c gene. PNAS 1986, 83, (21), 8044–8. PubMed PMC

Denison MS; Fisher JM; Whitlock JP Jr., The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J. Biol. Chem 1988, 263, (33), 17221–4. PubMed

Dere E; Lo R; Celius T; Matthews J; Zacharewski TR, Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genomics 2011, 12, 365. PubMed PMC

Dere E; Forgacs AL; Zacharewski TR; Burgoon LD, Genome-wide computational analysis of dioxin response element location and distribution in the human, mouse, and rat genomes. Chem. Res. Toxicol 2011, 24, (4), 494–504. PubMed PMC

Sogawa K; Numayama-Tsuruta K; Takahashi T; Matsushita N; Miura C; Nikawa J; Gotoh O; Kikuchi Y; Fujii-Kuriyama Y, A novel induction mechanism of the rat CYP1A2 gene mediated by Ah receptor–Arnt heterodimer. Biochem. Biophys. Res. Commun 2004, 318, (3), 746–755. PubMed

Gouédard C; Barouki R; Morel Y, Dietary polyphenols increase paraoxonase 1 gene expression by an aryl hydrocarbon receptor-dependent mechanism. Mol. Cell Biol 2004, 24, (12), 5209–5222. PubMed PMC

Matikainen T; Perez GI; Jurisicova A; Pru JK; Schlezinger JJ; Ryu HY; Laine J; Sakai T; Korsmeyer SJ; Casper RF; Sherr DH; Tilly JL, Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat. Genet 2001, 28, (4), 355–360. PubMed

DeGroot DE; Hayashi A; Denison MS, Lack of ligand-selective binding of the aryl hydrocarbon receptor to putative DNA binding sites regulating expression of Bax and paraoxonase 1 genes. Arch Biochem Biophys 2014, 541, 13–20. PubMed PMC

Hestermann EV; Stegeman JJ; Hahn ME, Relative contributions of affinity and intrinsic efficacy to aryl hydrocarbon receptor ligand potency. Toxicol. Appl. Pharmacol 2000, 168, (2), 160–72. PubMed

Englert NA; Turesky RJ; Han W; Bessette EE; Spivack SD; Caggana M; Spink DC; Spink BC, Genetic and epigenetic regulation of AHR gene expression in MCF-7 breast cancer cells: role of the proximal promoter GC-rich region. Biochem. Pharmacol 2012, 84, (5), 722–735. PubMed PMC

Helmig S; Seelinger JU; Döhrel J; Schneider J, RNA expressions of AHR, ARNT and CYP1B1 are influenced by AHR Arg554Lys polymorphism. Mol. Genet. Metab 2011, 104, (1-2), 180–184. PubMed

Aluru N; Karchner SI; Hahn ME, Role of DNA methylation of AHR1 and AHR2 promoters in differential sensitivity to PCBs in Atlantic Killifish, Fundulus heteroclitus. Aquat. Toxicol 2011, 101, (1), 288–294. PubMed PMC

Beedanagari SR; Taylor RT; Bui P; Wang F; Nickerson DW; Hankinson O, Role of epigenetic mechanisms in differential regulation of the dioxin-inducible human CYP1A1 and CYP1B1 genes. Mol. Pharmacol 2010, 78, (4), 608–616. PubMed PMC

Ikuta T; Kobayashi Y; Kawajiri K, Phosphorylation of nuclear localization signal inhibits the ligand-dependent nuclear import of aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun 2004, 317, (2), 545–550. PubMed

Ma Q; Baldwin KT, 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activaton and DNA binding of AhR. J. Biol. Chem 2000, 275, (12), 8432–8438. PubMed

Reitzel AM; Karchner SI; Franks DG; Evans BR; Nacci D; Champlin D; Vieira VM; Hahn ME, Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats. BMC Evol. Biol 2014, 14, 6. PubMed PMC

Reid NM; Proestou DA; Clark BW; Warren WC; Colbourne JK; Shaw JR; Karchner SI; Hahn ME; Nacci D; Oleksiak MF, The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 2016, 354, (6317), 1305–1308. PubMed PMC

Osterberg JS; Cammen KM; Schultz TF; Clark BW; Di Giulio RT, Genome-wide scan reveals signatures of selection related to pollution adaptation in non-model estuarine Atlantic killifish (Fundulus heteroclitus). Aquat. Toxicol 2018, 200, 73–82. PubMed PMC

Nacci D; Proestou D; Champlin D; Martinson J; Waits ER, Genetic basis for rapidly evolved tolerance in the wild: adaptation to toxic pollutants by an estuarine fish species. Mol. Ecol 2016, 25, (21), 5467–5482. PubMed

Li D; Liu C; Yu H; Zeng X; Xing X; Chen L; Gao C; Zhang Z; Xiao Y; Duan H; Zheng Y; Wang Q; Chen W, AhR is negatively regulated by miR-203 in response to TCDD or BaP treatment. Toxicol. Res 2014, 3, (2), 142–151.

Zhang W; Xie HQ; Li Y; Jin T; Li J; Xu L; Zhou Z; Zhang S; Ma D; Hahn ME; Zhao B, Transcriptomic analysis of Anabas testudineus and its defensive mechanisms in response to persistent organic pollutants exposure. Sci. Total Environ 2019, 669, 621–630. PubMed PMC

Mimura J; Ema M; Sogawa K; Fujii-Kuriyama Y, Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes. Dev 1999, 13, (1), 20–5. PubMed PMC

Karchner SI; Franks DG; Powell WH; Hahn ME, Regulatory interactions among three members of the vertebrate aryl hydrocarbon receptor family: AHR repressor, AHR1, and AHR2. J. Biol. Chem 2002, 277, (9), 6949–59. PubMed

Evans BR; Karchner SI; Allan LL; Pollenz RS; Tanguay RL; Jenny MJ; Sherr DH; Hahn ME, Repression of aryl hydrocarbon receptor (AHR) signaling by AHR repressor: role of DNA binding and competition for AHR nuclear translocator. Mol. Pharmacol 2008, 73, (2), 387–398. PubMed PMC

Oshima M; Mimura J; Yamamoto M; Fujii-Kuriyama Y, Molecular mechanism of transcriptional repression of AhR repressor involving ANKRA2, HDAC4, and HDAC5. Biochem. Biophys. Res. Commun 2007, 364, (2), 276–282. PubMed

MacPherson L; Ahmed S; Tamblyn L; Krutmann J; Förster I; Weighardt H; Matthews J, Aryl hydrocarbon receptor repressor and TiPARP (ARTD14) use similar, but also distinct mechanisms to repress aryl hydrocarbon receptor signaling. Int. J. Mol. Sci 2014, 15, (5), 7939–57. PubMed PMC

MacPherson L; Tamblyn L; Rajendra S; Bralha F; McPherson JP; Matthews J, 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic. Acids Res 2013, 41, (3), 1604–21. PubMed PMC

Wincent E; Bengtsson J; Mohammadi Bardbori A; Alsberg T; Luecke S; Rannug U; Rannug A, Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor. PNAS 2012, 109, (12), 4479–84. PubMed PMC

Mohammadi-Bardbori A; Bengtsson J; Rannug U; Rannug A; Wincent E, Quercetin, resveratrol, and curcumin are indirect activators of the aryl hydrocarbon receptor (AHR). Chem. Res. Toxicol 2012, 25, (9), 1878–1884. PubMed

Jeong J; Kim KH; Kim DY; Chandrasekaran G; Kim M; Pagire SH; Dighe M; Choi EY; Bak SM; Kim EY; Shin MG; Choi SY; Ahn JH, Identification of new aryl hydrocarbon receptor (AhR) antagonists using a zebrafish model. Bioorg. Med. Chem 2019, 27, (19), 115014. PubMed

Puyskens A; Stinn A; van der Vaart M; Kreuchwig A; Protze J; Pei G; Klemm M; Guhlich-Bornhof U; Hurwitz R; Krishnamoorthy G; Schaaf M; Krause G; Meijer AH; Kaufmann SHE; Moura-Alves P, Aryl hydrocarbon receptor modulation by tuberculosis drugs impairs host defense and treatment outcomes. Cell Host Microbe. 2020, 27, (2), 238–248. PubMed

Wu PY; Chuang PY; Chang GD; Chan YY; Tsai TC; Wang BJ; Lin KH; Hsu WM; Liao YF; Lee H, Novel Endogenous Ligands of Aryl Hydrocarbon Receptor Mediate Neural Development and Differentiation of Neuroblastoma. ACS Chem. Neurosci 2019, 10, (9), 4031–4042. PubMed

Tian Y; Gui W; Smith PB; Koo I; Murray IA; Cantorna MT; Perdew GH; Patterson AD, Isolation and identification of aryl hydrocarbon receptor modulators in white button mushrooms (Agaricus bisporus). J. Agric. Food Chem 2019, 67, (33), 9286–9294. PubMed PMC

Tarnow P; Zordick C; Bottke A; Fischer B; Kühne F; Tralau T; Luch A, Characterization of quinoline yellow dyes as transient aryl hydrocarbon receptor agonists. Chem. Res. Toxicol 2020, 33, (3), 742–750. PubMed

Murray IA; Patterson AD; Perdew GH, Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat. Rev. Cancer 2014, 14, (12), 801–814. PubMed PMC

Safe S; Jayaraman A; Chapkin RS, Ah receptor ligands and their impacts on gut resilience: structure-activity effects. Crit. Rev. Toxicol 2020, 1–11. PubMed PMC

Safe S; Jin UH; Park H; Chapkin RS; Jayaraman A, Aryl Hydrocarbon Receptor (AHR) Ligands as Selective AHR Modulators (SAhRMs). Int. J. Mol. Sci 2020, 21, (18). PubMed PMC

Dolciami D; Ballarotto M; Gargaro M; López-Cara LC; Fallarino F; Macchiarulo A, Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). Eur. J. Med. Chem 2020, 185, 111842. PubMed

Ehrlich AK; Kerkvliet NI, Is chronic AhR activation by rapidly metabolized ligands safe for the treatment of immune-mediated diseases? Curr. Opin. Toxicol 2017, 2, 72–78. PubMed PMC

Mahiout S; Tagliabue SG; Nasri A; Omoruyi IM; Pettersson L; Bonati L; Pohjanvirta R, In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators. Toxicol. In Vitro 2018, 52, 178–188. PubMed

Zhang X; Fang B; Wang T; Liu H; Feng M; Qin L; Zhang R, Tissue-specific bioaccumulation, depuration and metabolism of 4,4′-dichlorodiphenyl sulfide in the freshwater mussel Anodonta woodiana. Sci. Total Environ 2018, 642, 854–863. PubMed

Cheng J; Mao L; Zhao Z; Shen M; Zhang S; Huang Q; Gao S, Bioaccumulation, depuration and biotransformation of 4,4′-dibromodiphenyl ether in crucian carp (Carassius auratus). Chemosphere 2012, 86, (5), 446–53. PubMed

Roy MA; Sant KE; Venezia OL; Shipman AB; McCormick SD; Saktrakulkla P; Hornbuckle KC; Timme-Laragy AR, The emerging contaminant 3,3′-dichlorobiphenyl (PCB-11) impedes Ahr activation and Cyp1a activity to modify embryotoxicity of Ahr ligands in the zebrafish embryo model (Danio rerio). Environ. Pollut 2019, 254, 113027. PubMed PMC

Zhang R; Zhang X; Zhang J; Qu R; Zhang J; Liu X; Chen J; Wang Z; Yu H, Activation of avian aryl hydrocarbon receptor and inter-species sensitivity variations by polychlorinated diphenylsulfides. Environ. Sci. Technol 2014, 48, (18), 10948–10956. PubMed

Poland A; Glover E, Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent inducer of aryl hydrocarbon hydroxylase, with 3-methylcholanthrene. Mol. Pharmacol 1974, 10, (2), 349–59. PubMed

Xu LC; Bresnick E, Induction of cytochrome P450IA1 in rat hepatoma cell by polycyclic hydrocarbons and a dioxin. Biochem. Pharmacol 1990, 40, (6), 1399–403. PubMed

Hoffman TE; Acerbo ER; Carranza KF; Gilberto VS; Wallis LE; Hanneman WH, Ultrasensitivity dynamics of diverse aryl hydrocarbon receptor modulators in a hepatoma cell line. Arch. Toxicol 2019, 93, (3), 635–647. PubMed

Harper T; Joshi AD; Elferink CJ, Identification of stanniocalcin 2 as a novel aryl hydrocarbon receptor target gene. J. Pharmacol. Exp. Ther 2013, 344, (3), 579–588. PubMed PMC

Lowe MM; Mold JE; Kanwar B; Huang Y; Louie A; Pollastri MP; Wang C; Patel G; Franks DG; Schlezinger J; Sherr DH; Silverstone AE; Hahn ME; McCune JM, Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS One 2014, 9, (2), e87877. PubMed PMC

Joshi AD; Carter DE; Harper T; Elferink CJ, Aryl hydrocarbon receptor-dependent stanniocalcin 2 induction by cinnabarinic acid provides cytoprotection against endoplasmic reticulum and oxidative stress. J. Pharmacol. Exp. Ther 2015, 353, (1), 201–212. PubMed PMC

Zhao B; Degroot DE; Hayashi A; He G; Denison MS, CH223191 is a ligand-selective antagonist of the Ah (Dioxin) receptor. Toxicol. Sci 2010, 117, (2), 393–403. PubMed PMC

Murray IA; Flaveny CA; Chiaro CR; Sharma AK; Tanos RS; Schroeder JC; Amin SG; Bisson WH; Kolluri SK; Perdew GH, Suppression of cytokine-mediated complement factor gene expression through selective activation of the Ah receptor with 3′,4′-dimethoxy-α-naphthoflavone. Mol. Pharmacol 2011, 79, (3), 508–519. PubMed PMC

Chen G; Konstantinov AD; Chittim BG; Joyce EM; Bols NC; Bunce NJ, Synthesis of polybrominated diphenyl ethers and their capacity to induce CYP1A by the Ah receptor mediated pathway. Environ. Sci. Technol 2001, 35, (18), 3749–3756. PubMed

Poland A; Knutson JC, 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu. Rev. Pharmacol. Toxicol 1982, 22, 517–54. PubMed

EPA, U. In Recommended toxicity equivalence factors (TEFs) for human health risk assessments of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and dioxin-like compounds, 2010; Risk Assessment Forum Washington, DC: 2010.

van Birgelen AP, Hexachlorobenzene as a possible major contributor to the dioxin activity of human milk. Environ. Health Perspect 1998, 106, (11), 683–8. PubMed PMC

Hahn ME; Goldstein JA; Linko P; Gasiewicz TA, Interaction of hexachlorobenzene with the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro and in vivo. Evidence that hexachlorobenzene is a weak Ah receptor agonist. Arch. Biochem. Biophys 1989, 270, (1), 344–55. PubMed

Wu Y; Tan H; Zhou C; Crimmins BS; Holsen TM; Chen D, Bioaccumulation and spatiotemporal trends of polyhalogenated carbazoles in Great Lakes fish from 2004 to 2016. Environ. Sci. Technol 2018, 52, (8), 4536–4545. PubMed

Zhang X; Qin L; Qu R; Feng M; Wei Z; Wang L; Wang Z, Occurrence of polychlorinated diphenyl sulfides (PCDPSs) in surface sediments and surface water from the Nanjing section of the Yangtze River. Environ. Sci. Technol 2014, 48, (19), 11429–11436. PubMed

Şahin AD; Saçan MT, Understanding the toxic potencies of xenobiotics inducing TCDD/TCDF-like effects. SAR QSAR Environ. Res 2018, 29, (2), 117–131. PubMed

Liu H; Shi L; Giesy JP; Yu H, Polychlorinated diphenyl sulfides can induce ROS and genotoxicity via the AhR-CYP1A1 pathway. Chemosphere 2019, 223, 165–170. PubMed

Gregoraszczuk EL; Barć J; Falandysz J, Differences in the action of lower and higher chlorinated polychlorinated naphthalene (PCN) congeners on estrogen dependent breast cancer cell line viability and apoptosis, and its correlation with Ahr and CYP1A1 expression. Toxicology 2016, 366-367, 53–59. PubMed

Klocke C; Lein PJ, Evidence implicating non-dioxin-like congeners as the key mediators of polychlorinated biphenyl (PCB) developmental neurotoxicity. Int. J. Mol. Sci 2020, 21, (3), 1013. PubMed PMC

van Duursen MBM; van Ede KI; van den Berg M, One TEF concept does not fit all: The case for human risk assessment of polychlorinated biphenyls. Curr. Opin. Toxicol 2017, 2, 103–108.

Fang M; Guo J; Chen D; Li A; Hinton DE; Dong W, Halogenated carbazoles induce cardiotoxicity in developing zebrafish (Danio rerio) embryos. Environ. Toxicol. Chem 2016, 35, (10), 2523–2529. PubMed

Ji C; Yue S; Gu J; Kong Y; Chen H; Yu C; Sun Z; Zhao M, 2,7-Dibromocarbazole interferes with tube formation in HUVECs by altering Ang2 promoter DNA methylation status. Sci. Total Environ 2019, 697, 134156. PubMed

AhR Agonist Activity Confirmation of Polyhalogenated Carbazoles (PHCZs) Using an Integration of in Vitro, in Vivo, and in Silico Models. Environ. Sci. Technol 2019. PubMed

Zhang R; Zhang X; Shi J; Feng M; Wang X; Crump D; Zhang X, Polychlorinated Diphenyl Sulfides: An Emerging Class of Persistent, Bioaccumulative, and Toxic Substances in the Environment. Environ. Toxicol. Chem 2021, 40, (10), 2657–2666. PubMed

Mostrag A; Puzyn T; Haranczyk M, Modeling the overall persistence and environmental mobility of sulfur-containing polychlorinated organic compounds. Environ. Sci. Pollut. Res. Int 2010, 17, (2), 470–477. PubMed

Shi J; Zhang X; Qu R; Xu Y; Wang Z, Synthesis and QSPR study on environment-related properties of polychlorinated diphenyl sulfides (PCDPSs). Chemosphere 2012, 88, (7), 844–54. PubMed

Li Y; Li M; Shi J; Yang X; Wang Z, Hepatic antioxidative responses to PCDPSs and estimated short-term biotoxicity in freshwater fish. Aquat. Toxicol 2012, 120-121, 90–98. PubMed

Fang B; Shi J; Qin L; Feng M; Cheng D; Wang T; Zhang X, Toxicity evaluation of 4,4′-di-CDPS and 4,4′-di-CDE on green algae Scenedesmus obliquus: growth inhibition, change in pigment content, and oxidative stress. Environ. Sci. Pollut. Res. Int 2018, 25, (16), 15630–15640. PubMed

Abbasi G; Buser AM; Soehl A; Murray MW; Diamond ML, Stocks and flows of PBDEs in products from use to waste in the U.S. and Canada from 1970 to 2020. Environ. Sci. Technol 2015, 49, (3), 1521–8. PubMed

Klinčić D; Dvoršćak M; Jagić K; Mendaš G; Herceg Romanić S, Levels and distribution of polybrominated diphenyl ethers in humans and environmental compartments: a comprehensive review of the last five years of research. Environ. Sci. Pollut. Res. Int 2020, 27, (6), 5744–5758. PubMed

Zota AR; Mitro SD; Robinson JF; Hamilton EG; Park JS; Parry E; Zoeller RT; Woodruff TJ, Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression. Environ. Int 2018, 112, 269–278. PubMed PMC

Meerts IA; Letcher RJ; Hoving S; Marsh G; Bergman A; Lemmen JG; van der Burg B; Brouwer A, In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Environ. Health Perspect 2001, 109, (4), 399–407. PubMed PMC

Kojima H; Takeuchi S; Uramaru N; Sugihara K; Yoshida T; Kitamura S, Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells. Environ. Health Perspect 2009, 117, (8), 1210–8. PubMed PMC

Macaulay LJ; Chen A; Rock KD; Dishaw LV; Dong W; Hinton DE; Stapleton HM, Developmental toxicity of the PBDE metabolite 6-OH-BDE-47 in zebrafish and the potential role of thyroid receptor β. Aquat. Toxicol 2015, 168, 38–47. PubMed PMC

Dingemans MM; van den Berg M; Westerink RH, Neurotoxicity of brominated flame retardants: (in)direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous system. Environ. Health Perspect 2011, 119, (7), 900–907. PubMed PMC

Yang J; Zhao H; Chan KM, Toxic effects of polybrominated diphenyl ethers (BDE 47 and 99) and localization of BDE-99-induced cyp1a mRNA in zebrafish larvae. Toxicol. Rep 2017, 4, 614–624. PubMed PMC

Su G; Xia J; Liu H; Lam MH; Yu H; Giesy JP; Zhang X, Dioxin-like potency of HO- and MeO- analogues of PBDEs’ the potential risk through consumption of fish from eastern China. Environ. Sci. Technol 2012, 46, (19), 10781–10788. PubMed

Gu C; Cai J; Fan X; Bian Y; Yang X; Xia Q; Sun C; Jiang X, Theoretical investigation of AhR binding property with relevant structural requirements for AhR-mediated toxicity of polybrominated diphenyl ethers. Chemosphere 2020, 249, 126554. PubMed

Peters AK; Nijmeijer S; Gradin K; Backlund M; Bergman A; Poellinger L; Denison MS; Van den Berg M, Interactions of polybrominated diphenyl ethers with the aryl hydrocarbon receptor pathway. Toxicol. Sci 2006, 92, (1), 133–42. PubMed PMC

Yang J; Zhu J; Chan KM, BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells. Toxicol. Appl. Pharmacol 2016, 305, 203–215. PubMed

Hu W; Liu H; Sun H; Shen O; Wang X; Lam MH; Giesy JP; Zhang X; Yu H, Endocrine effects of methoxylated brominated diphenyl ethers in three in vitro models. Mar. Pollut. Bull 2011, 62, (11), 2356–2361. PubMed

Suzuki G; Michinaka C; Matsukami H; Noma Y; Kajiwara N, Validity of using a relative potency factor approach for the risk management of dioxin-like polychlorinated naphthalenes. Chemosphere 2020, 244, 125448. PubMed

Han Y; Liu W; Li H; Lei R; Liu G; Gao L; Su G, Distribution of polychlorinated naphthalenes (PCNs) in the whole blood of typical meat animals. J. Environ. Sci 2018, 72, 208–212. PubMed

Lisek M; Stragierowicz J; Guo F; Prosseda PP; Wiktorska M; Ferenc B; Kilanowicz A; Zylinska L; Boczek T, Hexachloronaphthalene induces mitochondrial-dependent neurotoxicity via a mechanism of enhanced production of reactive oxygen species. Oxid. Med. Cell Longev 2020, 2020, 2479234. PubMed PMC

Stragierowicz J; Bruchajzer E; Daragó A; Nasiadek M; Kilanowicz A, Hexachloronaphthalene (HxCN) as a potential endocrine disruptor in female rats. Environ. Pollut 2018, 243, (Pt B), 1026–1035. PubMed

Li C; Zhang L; Li J; Min Y; Yang L; Zheng M; Wu Y; Yang Y; Qin L; Liu G, Polychlorinated naphthalenes in human milk: Health risk assessment to nursing infants and source analysis. Environ. Int 2020, 136, 105436. PubMed

Zhu Q; Zhang X; Dong S; Gao L; Liu G; Zheng M, Gas and particle size distributions of polychlorinated naphthalenes in the atmosphere of Beijing, China. Environ. Pollut 2016, 212, 128–134. PubMed

Hu W; Sorrentino C; Denison MS; Kolaja K; Fielden MR, Induction of cyp1a1 is a nonspecific biomarker of aryl hydrocarbon receptor activation: results of large scale screening of pharmaceuticals and toxicants in vivo and in vitro. Mol. Pharmacol 2007, 71, (6), 1475–1486. PubMed

Karchner SI; Franks DG; Kennedy SW; Hahn ME, The molecular basis for differential dioxin sensitivity in birds: role of the aryl hydrocarbon receptor. PNAS 2006, 103, (16), 6252–6257. PubMed PMC

Poland A; Glover E; Ebetino FH; Kende AS, Photoaffinity labeling of the Ah receptor. J. Biol. Chem 1986, 261, (14), 6352–65. PubMed

Henry EC; Bemis JC; Henry O; Kende AS; Gasiewicz TA, A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo. Arch. Biochem. Biophys 2006, 450, (1), 67–77. PubMed

Opitz CA; Litzenburger UM; Sahm F; Ott M; Tritschler I; Trump S; Schumacher T; Jestaedt L; Schrenk D; Weller M; Jugold M; Guillemin GJ; Miller CL; Lutz C; Radlwimmer B; Lehmann I; von Deimling A; Wick W; Platten M, An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011, 478, (7368), 197–203. PubMed

Karchner SI; Powell WH; Hahn ME, Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus. J. Biol. Chem 1999, 274, (47), 33814–33824. PubMed

Poland A; Glover E, Variation in the molecular mass of the Ah receptor among vertebrate species and strains of rats. Biochem. Biophys. Res. Commun 1987, 146, (3), 1439–49. PubMed

Hahn ME; Poland A; Glover E; Stegeman JJ, Photoaffinity labeling of the Ah receptor: phylogenetic survey of diverse vertebrate and invertebrate species. Arch. Biochem. Biophys 1994, 310, (1), 218–28. PubMed

Bradfield CA; Poland A, A competitive binding assay for 2,3,7,8-tetrachlorodibenzo-p-dioxin and related ligands of the Ah receptor. Mol. Pharmacol 1988, 34, (5), 682–8. PubMed

Poland A; Palen D; Glover E, Analysis of the four alleles of the murine aryl hydrocarbon receptor. Mol. Pharmacol 1994, 46, (5), 915–21. PubMed

Ema M; Ohe N; Suzuki M; Mimura J; Sogawa K; Ikawa S; Fujii-Kuriyama Y, Dioxin binding activities of polymorphic forms of mouse and human arylhydrocarbon receptors. J. Biol. Chem 1994, 269, (44), 27337–43. PubMed

Mahiout S; Lindén J; Esteban J; Sánchez-Pérez I; Sankari S; Pettersson L; Håkansson H; Pohjanvirta R, Toxicological characterisation of two novel selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats. Toxicol. Appl. Pharmacol 2017, 326, 54–65. PubMed

Pohjanvirta R; Korkalainen M; McGuire J; Simanainen U; Juvonen R; Tuomisto JT; Unkila M; Viluksela M; Bergman J; Poellinger L; Tuomisto J, Comparison of acute toxicities of indolo[3,2-b]carbazole (ICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in TCDD-sensitive rats. Food Chem. Toxicol 2002, 40, (7), 1023–32. PubMed

Elad T; Belkin S, Reporter Gene Assays in Ecotoxicology. Adv. Biochem. Eng. Biotechnol 2017, 157, 135–157. PubMed

Struss AK; Pasini P; Daunert S, Biosensing systems based on genetically engineered whole cells. In Recognition Receptors in Biosensors, Zourob M, Ed. Springer New York: New York, NY, 2010; pp 565–598.

Ding G; Wang L; Zhang S; Li S; Xie Q; Xu L; Zhou Z; He Y; Zhao B, Simple and rapid determination of dioxin in fish and sea food using a highly sensitive reporter cell line, CBG 2.8D. J. Environ. Sci 2021, 100, 353–359. PubMed

Hayashi A; Denison MS, Development of a novel recombinant cell line for detection and characterization of Ah receptor nuclear translocation in intact cells. Toxicol. In Vitro 2020, 66, 104873. PubMed PMC

Lin CI; Hsieh CH; Lee SS; Lee WS; Chang-Chien GP; Pan CY; Lee H, Establishment of a fluorescence resonance energy transfer-based bioassay for detecting dioxin-like compounds. J. Biomed. Sci 2008, 15, (6), 833–840. PubMed

Csanaky IL; Lickteig AJ; Klaassen CD, Aryl hydrocarbon receptor (AhR) mediated short-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid homeostasis in mice. Toxicol. Appl. Pharmacol 2018, 343, 48–61. PubMed PMC

Phadnis-Moghe AS; Chen W; Li J; Crawford RB; Bach A; D’Ingillo S; Kovalova N; Suarez-Martinez JE; Kaplan BL; Harrill JA; Budinsky R; Rowlands JC; Thomas RS; Kaminski NE, Immunological characterization of the aryl hydrocarbon receptor (AHR) knockout rat in the presence and absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicology 2016, 368-369, 172–182. PubMed

Zhang R; Wang X; Zhang X; Song C; Letcher RJ; Liu C, Polychlorinated diphenylsulfides activate aryl hydrocarbon receptor 2 in zebrafish embryos: potential mechanism of developmental toxicity. Environ. Sci. Technol 2018, 52, (7), 4402–4412. PubMed

Zhang X; Xia P; Wang P; Yang J; Baird DJ, Omics advances in ecotoxicology. Environ. Sci. Technol 2018, 52, (7), 3842–3851. PubMed

Shankar P; Geier MC; Truong L; McClure RS; Pande P; Waters KM; Tanguay RL, Coupling genome-wide transcriptomics and developmental toxicity profiles in zebrafish to characterize polycyclic aromatic hydrocarbon (PAH) hazard. Int. J. Mol. Sci 2019, 20, (10), 2570. PubMed PMC

Xia P; Zhang H; Peng Y; Shi W; Zhang X, Pathway-based assessment of single chemicals and mixtures by a high-throughput transcriptomics approach. Environ. Int 2020, 136, 105455. PubMed

Zhang J; Zhang C; Du Z; Zhu L; Wang J; Wang J; Li B, Emerging contaminant 1,3,6,8-tetrabromocarbazole induces oxidative damage and apoptosis during the embryonic development of zebrafish (Danio rerio). Sci. Total Environ 2020, 743, 140753. PubMed

Zhang R; Wang X; Zhang X; Zhang J; Zhang X; Shi X; Crump D; Letcher RJ; Giesy JP; Liu C, Down-regulation of hspb9 and hspb11 contributes to wavy notochord in zebrafish embryos following exposure to polychlorinated diphenylsulfides. Environ. Sci. Technol 2018, 52, (21), 12829–12840. PubMed

Zhang X; Liu F; Chen B; Li Y; Wang Z, Acute and subacute oral toxicity of polychlorinated diphenyl sulfides in mice: determining LD50 and assessing the status of hepatic oxidative stress. Environ. Toxicol. Chem 2012, 31, (7), 1485–1493. PubMed

Peters AK; Sanderson JT; Bergman A; van den Berg M, Antagonism of TCDD-induced ethoxyresorufin-O-deethylation activity by polybrominated diphenyl ethers (PBDEs) in primary cynomolgus monkey (Macaca fascicularis) hepatocytes. Toxicol. Lett 2006, 164, (2), 123–132. PubMed

Koike E; Yanagisawa R; Takigami H; Takano H, Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro. Toxicol. In Vitro 2014, 28, (2), 327–333. PubMed

Kuiper RV; Bergman A; Vos JG; van den Berg M, Some polybrominated diphenyl ether (PBDE) flame retardants with wide environmental distribution inhibit TCDD-induced EROD activity in primary cultured carp (Cyprinus carpio) hepatocytes. Aquat. Toxicol 2004, 68, (2), 129–139. PubMed

Wahl M; Guenther R; Yang L; Bergman A; Straehle U; Strack S; Weiss C, Polybrominated diphenyl ethers and arylhydrocarbon receptor agonists: Different toxicity and target gene expression. Toxicol. Lett 2010, 198, (2), 119–126. PubMed

Glazer L; Wells CN; Drastal M; Odamah KA; Galat RE; Behl M; Levin ED, Developmental exposure to low concentrations of two brominated flame retardants, BDE-47 and BDE-99, causes life-long behavioral alterations in zebrafish. Neurotoxicology 2018, 66, 221–232. PubMed PMC

Cao L; Zheng Z; Ren XM; Andersson PL; Guo L, Structure-dependent activity of polybrominated diphenyl ethers and their hydroxylated metabolites on estrogen related receptor γ: in vitro and in silico study. Environ. Sci. Technol 2018, 52, (15), 8894–8902. PubMed

Zhang R; Zhang J; Zhang X; Zhang J; Su G; Farmahin R; Giesy JP; Yu H, In vitro dioxin-like potencies of HO- and MeO-PBDEs and inter-species sensitivity variation in birds. Ecotoxicol. Environ. Saf 2016, 126, 202–210. PubMed

Cao L; Ren X; Yang Y; Wan B; Guo L; Chen D; Fan Y, Hydroxylated polybrominated diphenyl ethers exert estrogenic effects via non-genomic g protein-coupled estrogen receptor mediated pathways. Environ. Health Perspect 2018, 126, (5), 057005. PubMed PMC

Cantón RF; Scholten DE; Marsh G; de Jong PC; van den Berg M, Inhibition of human placental aromatase activity by hydroxylated polybrominated diphenyl ethers (OH-PBDEs). Toxicol. Appl. Pharmacol 2008, 227, (1), 68–75. PubMed

Legradi J; Pomeren MV; Dahlberg AK; Legler J, Effects of hydroxylated polybrominated diphenyl ethers in developing zebrafish are indicative of disruption of oxidative phosphorylation. Int. J. Mol. Sci 2017, 18, (5), 970. PubMed PMC

Liu Y; Guo R; Tang S; Zhu F; Zhang S; Yan Z; Chen J, Single and mixture toxicities of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 on the feeding activity of Daphnia magna: From behavior assessment to neurotoxicity. Chemosphere 2018, 195, 542–550. PubMed

Xu X; Huang H; Wen B; Wang S; Zhang S, Phytotoxicity of brominated diphenyl ether-47 (BDE-47) and its hydroxylated and methoxylated analogues (6-OH-BDE-47 and 6-MeO-BDE-47) to maize (Zea mays L.). Chem. Res. Toxicol 2015, 28, (3), 510–517. PubMed

Villeneuve DL; Kannan K; Khim JS; Falandysz J; Nikiforov VA; Blankenship AL; Giesy JP, Relative potencies of individual polychlorinated naphthalenes to induce dioxin-like responses in fish and mammalian in vitro bioassays. Arch. Environ. Contam. Toxicol 2000, 39, (3), 273–281. PubMed

Barć J; Gregoraszczuk E, Effects of individual polychlorinated naphthalene (PCN) components of Halowax 1051 and two defined, artificial PCN mixtures on AHR and CYP1A1 protein expression, steroid secretion and expression of enzymes involved in steroidogenesis (CYP17, 17β-HSD and CYP19) in porcine ovarian follicles. Toxicology 2014, 322, 14–22. PubMed

Kilanowicz A; Czekaj P; Sapota A; Skrzypinska-Gawrysiak M; Bruchajzer E; Darago A; Czech E; Plewka D; Wiaderkiewicz A; Sitarek K, Developmental toxicity of hexachloronaphthalene in Wistar rats. A role of CYP1A1 expression. Reprod. Toxicol 2015, 58, 93–103. PubMed

Omura M; Masuda Y; Hirata M; Tanaka A; Makita Y; Ogata R; Inoue N, Onset of spermatogenesis is accelerated by gestational administration of 1,2,3,4,6,7-hexachlorinated naphthalene in male rat offspring. Environ. Health Perspect 2000, 108, (6), 539–44. PubMed PMC

Blankenship AL; Kannan K; Villalobos SA; Villeneuve DL; Falandysz J; Imagawa T; Jakobsson E; Giesy JP, Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce ah receptor-mediated responses. Environ. Sci. Technol 2000, 34, (15), 3153–3158.

Vinitskaya H; Lachowicz A; Kilanowicz A; Bartkowiak J; Zylinska L, Exposure to polychlorinated naphthalenes affects GABA-metabolizing enzymes in rat brain. Environ. Toxicol. Pharmacol 2005, 20, (3), 450–455. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...