Lack of association between cortical amyloid deposition and glucose metabolism in early stage Alzheimer´s disease patients
Language English Country Poland Media electronic
Document type Journal Article
PubMed
34957735
PubMed Central
PMC8884854
DOI
10.2478/raon-2021-0051
PII: raon-2021-0051
Knihovny.cz E-resources
- Keywords
- Alzheimer disease, FDG, PET, tau,
- MeSH
- Alzheimer Disease * diagnostic imaging metabolism MeSH
- Amyloid beta-Peptides metabolism MeSH
- Fluorodeoxyglucose F18 MeSH
- Glucose metabolism MeSH
- Humans MeSH
- Positron Emission Tomography Computed Tomography MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amyloid beta-Peptides MeSH
- Fluorodeoxyglucose F18 MeSH
- Glucose MeSH
BACKGROUND: Beta amyloid (Aβ) causes synaptic dysfunction leading to neuronal death. It is still controversial if the magnitude of Aβ deposition correlates with the degree of cognitive impairment. Diagnostic imaging may lead to a better understanding the role of Aβ in development of cognitive deficits. The aim of the present study was to investigate if Aβ deposition in the corresponding brain region of early stage Alzheimer´s disease (AD) patients, directly correlates to neuronal dysfunction and cognitive impairment indicated by reduced glucose metabolism. PATIENTS AND METHODS: In 30 patients with a clinical phenotype of AD and amyloid positive brain imaging, 2-[18F] fluoro-2-deoxy-d-glucose (FDG) PET/CT was performed. We extracted the average [18F] flutemetamol (Vizamyl) uptake for each of the 16 regions of interest in both hemispheres and computed the standardized uptake value ratio (SUVR) by dividing the Vimazyl intensities by the mean signal of positive and negative control regions. Data were analysed using the R environment for statistical computing and graphics. RESULTS: Any negative correlation between Aβ deposition and glucose metabolism in 32 dementia related and corresponding brain regions in AD patients was not found. None of the correlation coefficient values were statistically significant different from zero based on two-sided p- value. CONCLUSIONS: Regional Aβ deposition did not correlate negatively with local glucose metabolism in early stage AD patients. Our findings support the role of Aβ as a valid biomarker, but does not permit to conclude that Aβ is a direct cause for an aberrant brain glucose metabolism and neuronal dysfunction.
Department of Gerontology Kepler University Hospital Neuromed Campus Linz Austria
Department of Neurology Klinikum Wels Grieskirchen Wels Austria
Department of Radiology Clinic of Nuclear Medicine Medical University Graz Graz Austria
Institute for Applied Statistics Johannes Kepler University Linz Austria
Institute for Statistics and Mathematics WU University of Economics and Business Vienna Austria
Institute of Nuclear Medicine Kepler University Hospital Neuromed Campus Linz Austria
See more in PubMed
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5. doi: 10.1126/science.1566067. PubMed DOI
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6. doi: 10.1126/science.1072994. PubMed DOI
Murphy MP, LeVine H. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19:311–23. doi: 10.3233/JAD-2010-1221. PubMed DOI PMC
Jack CR Jr, Wiste HJ, Knopman DS, Vemuri P, Mielke MM, Weigand SD. Rates of beta-amyloid accumulation are independent of hippocampal neurodegeneration. Neurology. 2014;82:1605–12. doi: 10.1212/WNL.0000000000000386. et al. PubMed DOI PMC
Altmann A, Ng B, Landau SM, Jagust WJ, Greicius MD. Regional brain hypometabolism is unrelated to regional amyloid plaque burden. Brain. 2015;138:3734–46. doi: 10.1093/brain/awv278. PubMed DOI PMC
Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al; Bapineuzumab 301 and 302 Clinical Trial Investigators. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:322–33. doi: 10.1056/NEJMoa1304839. PubMed DOI PMC
Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71:36281. doi: 10.1097/NEN.0b013e31825018f7. et al. PubMed DOI PMC
Cho H, Choi JY, Hwang MS, Lee JH, Kim YJ, Lee HM. Tau PET in Alzheimer disease and mild cognitive impairment. Neurology. 2016;87:375–83. doi: 10.1212/WNL.0000000000002892. et al. PubMed DOI
Schöll M, Ossenkoppele R, Strandberg O, Palmqvist S, Jögi J, Ohlsson T. Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer’s disease. Brain. 2017;140:2286–94. doi: 10.1093/brain/awx171. et al. PubMed DOI
Saint-Aubert L, Almkvist O, Chiotis K, Almeida R, Wall A, Nordberg A. Regional tau deposition measured by [18F]THK5317 positron emission tomography is associated to cognition via glucose metabolism in Alzheimer’s disease. Alzheimers Res Ther. 2016;8:38. doi: 10.1186/s13195-016-0204-z. PubMed DOI PMC
Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999;52:1397–403. et al. PubMed PMC
Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O. Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12:357–67. doi: 10.1016/S1474-4422(13)70044-9. et al. PubMed DOI
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. doi: 10.1016/j.jalz.2011.03.005. et al. PubMed DOI PMC
Shivamurthy VK, Tahari AK, Marcus C, Subramaniam RM. Brain FDG PET and the diagnosis of dementia. AJR Am J Roentgenol. 2015;204:W76–85. doi: 10.2214/AJR.13.12363. PubMed DOI
Ishii K. PET approaches for diagnosis of dementia. AJNR Am J Neuroradiol. 2014;35:2030–8. doi: 10.3174/ajnr.A3695. PubMed DOI PMC
Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined. Radiology. 2013;266:583–91. doi: 10.1148/radiol.12120010. et al. PubMed DOI PMC
Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain. 2006;129:2856–66. doi: 10.1093/brain/awl178. et al. PubMed DOI
Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF. Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C]PIB and [18F]FDG PET study. Neurology. 2007;68:501–8. doi: 10.1212/01.wnl.0000244749.20056.d4. et al. PubMed DOI
Cohen AD, Price JC, Weissfeld LA, James J, Rosario BL, Bi W. Basal cerebral metabolism may modulate the cognitive effects of Aβ in mild cognitive impairment: an example of brain reserve. J Neurosci. 2009;29:14770–8. doi: 10.1523/JNEUROSCI.3669-09.2009. et al. PubMed DOI PMC
Deuschl G, Maier W, et al; Steuerungsgruppe. S3- Guideline dementias. [German]. In: German Society for Neurology, editor. Guidelines for diagnostics and therapy in neurology. [German] 2016. www.dgn.org/leitlinien [cited 2021 Sep 12]. Available at.
Folstein MF, Folsten SE, McHugh PR. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. doi: 10.1016/0022-3956(75)90026-6. PubMed DOI
Pichler R, Dunzinger A, Wurm G, Pichler J, Weis S, Nussbaumer K. Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? Eur J Nucl Med Mol Imaging. 2010;37:1521–8. doi: 10.1007/s00259-010-1457-6. et al. PubMed DOI
Hodolic M, Topakian R, Pichler R. 18F-fluorodeoxyglucose and 18F-flumazenil positron emission tomography in patients with refractory epilepsy. Radiol Oncol. 2016;50:247–53. doi: 10.1515/raon-2016-0032. PubMed DOI PMC
A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. http://www.R-project.org/ R Core Team. [cited 2021 Sep 13]. Available at.
Holm S. A simple sequentially rejective multiple test procedure. Scand J of Stat. 1979;6:65–70.
Murphy MP, LeVine H. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19:311–23. doi: 10.3233/JAD-2010-1221. PubMed DOI PMC
Dickson TC, Vickers JC. The morphological phenotype of beta-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neuroscience. 2001;105:99–107. doi: 10.1016/s0306-4522(01)00169-5. PubMed DOI
Vlassenko AG, Benzinger TL, Morris JC. PET amyloid-beta imaging in preclinical Alzheimer’s disease. Biochim Biophys Acta 12012; 1822. pp. 370–9. PubMed DOI PMC
Lowe SL, Willis BA, Hawdon A, Natanegara F, Chua L, Foster J. Donanemab (LY3002813) dose-escalation study in Alzheimer’s disease. Alzheimers Dement (N Y) 7:e12112. doi: 10.1002/trc2.12112. et al. PubMed DOI PMC
Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci. 2020;27:18. doi: 10.1186/s12929-019-0609-7. PubMed DOI PMC
Tomic JL, Pensalfini A, Head E, Glabe CG. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis. 2009;35:352–8. doi: 10.1016/j.nbd.2009.05.024. PubMed DOI PMC
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J. 2014 Update of the Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2015;11:e1–120. doi: 10.1016/j.jalz.2014.11.001. et al. PubMed DOI PMC
Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 2006;355:2652–63. doi: 10.1056/NEJMoa054625. et al. PubMed DOI
Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G. Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7:129–35. doi: 10.1016/S1474-4422(08)70001-2. et al. PubMed DOI
Koole M, Lewis DM, Buckley C, Nelissen N, Vandenbulcke M, Brooks DJ. Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med. 2009;50:818–22. doi: 10.2967/jnumed.108.060756. et al. PubMed DOI
Kung HF, Choi SR, Qu W, Zhang W, Skovronsky D. 18F stilbenes and styrylpyridines for PET imaging of a beta plaques in Alzheimer’s disease: a miniperspective. J Med Chem. 2010;53:933–41. doi: 10.1021/jm901039z. PubMed DOI PMC
Frings L, Hellwig S, Spehl TS, Bormann T, Buchert R, Vach W. Asymmetries of amyloid-β burden and neuronal dysfunction are positively correlated in Alzheimer’s disease. Brain. 2015;138:3089–99. doi: 10.1093/brain/awv229. et al. PubMed DOI
Jack CR Jr, Wiste HJ, Knopman DS, Vemuri P, Mielke MM, Weigand SD. Rates of beta-amyloid accumulation are independent of hippocampal neurodegeneration. Neurology. 2014;82:1605–12. doi: 10.1212/WNL.0000000000000386. et al. PubMed DOI PMC
Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC. Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci USA. 2002;99:4703–7. doi: 10.1073/pnas.052587399. PubMed DOI PMC
Pearson RC, Esiri MM, Hiorns RW, Wilcock GK, Powell TP. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci USA. 1985;82:4531–4. doi: 10.1073/pnas.82.13.4531. PubMed DOI PMC
Kepe V, Moghbel MC, Långström B, Zaidi H, Vinters HV, Huang SC. Amyloid-β positron emission tomography imaging probes: a critical review. J Alzheimers Dis. 2013;36:613–31. doi: 10.3233/JAD-130485. et al. PubMed DOI PMC
Zwan MD, Bouwman FH, Konijnenberg E, van der Flier WM, Lammmertma AA, Verhey FR. Diagnostic impact of [18F]flutemetamol PET in earlyonset dementia. Alzheimers Res Ther. 2017;9:2. doi: 10.1186/s13195-0160228-4. et al. PubMed DOI PMC
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59. doi: 10.1007/BF00308809. PubMed DOI
Morbelli S, Bauckneht M, Scheltens P. Imaging biomarkers in Alzheimer’s Disease: added value in the clinical setting. Q J Nucl Med Mol Imaging. 2017;61:360–71. doi: 10.23736/S1824-4785.17.03011-4. PubMed DOI
Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE. Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch Neurol. 2004;61:378–84. doi: 10.1001/archneur.61.3.378. PubMed DOI
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14:837–42. doi: 10.1038/nm1782. et al. PubMed DOI PMC
Braak H, Alafuzoff I, Arzberger T, Kretzschmanr H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunhistochemistry. Acta Neuropathol. 2006;112:389–404. doi: 10.1007/s00401-006-0127-z. PubMed DOI PMC
Dronse J, Fliessbach K, Bischof GN, Reutern von B, Faber J, Hammes J. In vivo patterns of tau pathology, amyloid-β burden, and neuronal dysfunction in clinical variants of Alzheimer’s disease. J Alzheimers Dis. 2017;55:465–71. doi: 10.3233/JAD-160316. et al. PubMed DOI
Bejanin A, Schonhaut DR, La Joie R, Kramer JH, Baker SL, Sosa N. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain. 2017;140:3286–300. doi: 10.1093/brain/awx243. et al. PubMed DOI PMC
Huber CM, Yee C, May T, Dhanala A, Mitchell CS. Cognitive decline in preclinical Alzheimer’s disease: amyloid-beta versus tauopathy. J Alzheimers Dis. 2018;61:265–81. doi: 10.3233/JAD-170490. PubMed DOI PMC