Oxacillin (Methicillin) Resistant Staphylococci in Domestic Animals in the Czech Republic

. 2021 Dec 06 ; 10 (12) : . [epub] 20211206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34959540

The aim of this study was to describe the prevalence of different Staphylococcus species isolated from pathological processes and lesions in domestic animals in the Czech Republic and to detect and describe oxacillin (methicillin)-resistant strains (MRS). During the years 2019-2020, a total of 5218 veterinary clinical samples from the Czech Republic were tested. Testing was performed by culture methods and typing by molecular phenotypic methods MALDI-TOF MS and PCR. Antimicrobial susceptibility testing of the strains was performed by the disk diffusion method. A total of 854 staphylococci strains were identified (16.37% prevalence), out of which 43 strains of 6 species of staphylococci were MRS (n = 43; 0.82% prevalence). Of the MRS strains, the most prevalent species were Staphylococcus pseudintermedius (n = 24; 0.46% prevalence) and Staphylococcus aureus (n = 7; 0.13% prevalence). Susceptibility testing showed resistance to beta-lactam antibiotics and, depending on the species, also to trimethoprim/sulfamethoxazole, gentamicin, tetracycline, erythromycin, clindamycin, and enrofloxacin. For further characterization of MRS, PCR assay for virulence factor genes was performed. Seven of the 14 target genes were observed only in S. aureus, except for the eno gene encoding laminin-binding protein, which was also detected in other staphylococci. It is necessary to emphasize the issue of correct using of antimicrobials in practice and antibiotic policy in university teaching and to create stricter legislation that would prevent the widespread use of antimicrobials in veterinary medicine, especially in livestock to reduce the emergence and spread of antimicrobial resistance.

Zobrazit více v PubMed

Julák J. Introduction to Medical Microbiology. 2nd ed. Karolinum; Prague, Czech Republic: 2015. p. 404.

Bzdil J., Holy O., Chmelar D. Gram-positive aerobic and microaerophilic microorganisms isolated from pathological processes and lesions of horses. Vet. Med. 2017;62:1–9. doi: 10.17221/107/2016-VETMED. DOI

Rossi C.C., Dias I.D.S., Muniz I.M., Lilenbaum W., Giambiagi-Demarval M. The oral microbiota of domestic cats harbors a wide variety of Staphylococcus species with zoonotic potential. Vet. Microbiol. 2017;201:136–140. doi: 10.1016/j.vetmic.2017.01.029. PubMed DOI

Mama O.M., Gómez-Sanz E., Ruiz-Ripa L., Gómez P., Torres C. Diversity of staphylococcal species in food producing animals in Spain, with detection of PVL-positive MRSA ST8 (USA300) Vet. Microbiol. 2019;233:5–10. doi: 10.1016/j.vetmic.2019.04.013. PubMed DOI

Vasileiou N.G.C., Chatzopoulos D.C., Sarrou S., Fragkou I.A., Katsafadou A.I., Mavrogianni V.S., Petinaki E., Fthenakis G.C. Role of staphylococci in mastitis in sheep. J. Dairy Res. 2019;86:254–266. doi: 10.1017/S0022029919000591. PubMed DOI

Quinn P.J., Markey B.K., Leonard F.C., Fitzpatrick E.S., Fanning S., Hartigan P.J. Veterinary Microbiology and Microbial Disease. 2nd ed. Blackwell Publishing; Oxford, UK: 2011. p. 912.

Anderson K.L., Kearns R., Lyman R., Correa M.T. Staphylococci in dairy goats and human milkers, and the relationship with herd management practices. Small Rumin. Res. 2018;171:13–22. doi: 10.1016/j.smallrumres.2018.11.021. DOI

Magleby R., Bemis D.A., Kim D., Carroll K.C., Castanheira M., Kania S.A., Jenkins S.G., Westblade L.F. First reported human isolation of Staphylococcus delphini. Diagn. Microbiol. Infect. Dis. 2019;94:274–276. doi: 10.1016/j.diagmicrobio.2019.01.014. PubMed DOI

Votava M., Černohorská L., Heroldová M., Holá V., Mejzlíková L., Ondrovčík P., Růžička F., Dvořáčková M., Woznicová V., Zahradníček O. Special Medical Microbiology. Neptun; Brno, Czech Republic: 2006. p. 495. (In Czech)

Bradley A. Bovine Mastitis: An Evolving Disease. Vet. J. 2002;164:116–128. doi: 10.1053/tvjl.2002.0724. PubMed DOI

Zecca E., Costanzo M., Croce A., Sola D., Pirovano A., Matino E., Pirisi M. First reported human case of meningitis by Staphylococcus condimenti. Infection. 2019;47:651–653. doi: 10.1007/s15010-018-01266-2. PubMed DOI

Bzdil J., Štanclová D., Toporčák J., Dopitová Š., Axmannová M. Staphylococci Isolated from Dogs and Cats and its Susceptibility to Antimicrobials. Veterinářství. 2019;69:155–160. (In Czech)

Songer J.G., Post K.W. Veterinary Microbiology Bacterial and Fungal Agents of Animal Disease. Elsevier Sounders; Philadelphia, PA, USA: 2005. p. 434.

Murugaiyan J., Walther B., Stamm I., Abou-Elnaga Y., Brueggemann-Schwarze S., Vincze S., Wieler L.H., Lübke-Becker A., Semmler T., Roesler U. Species differentiation within the Staphylococcus intermedius group using a refined MALDI-TOF MS database. Clin. Microbiol. Infect. 2014;20:1007–1014. doi: 10.1111/1469-0691.12662. PubMed DOI

Litster A., Moss S.M., Honnery M., Rees B., Trott D.J. Prevalence of bacterial species in cats with clinical signs of lower urinary tract disease: Recognition of Staphylococcus felis as a possible feline urinary tract pathogen. Vet. Microbiol. 2007;121:182–188. doi: 10.1016/j.vetmic.2006.11.025. PubMed DOI

Ahmad N.I., Yean C.Y., Foo P.C., Safiee A.W.M., Hassan S.A. Prevalence and association of Panton-Valentine Leukocidin gene with the risk of sepsis in patients infected with Methicillin Resistant Staphylococcus aureus. J. Infect. Public Health. 2020;13:1508–1512. doi: 10.1016/j.jiph.2020.06.018. PubMed DOI

Von Eiff C., Peters G., Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect. Dis. 2002;2:677–685. doi: 10.1016/S1473-3099(02)00438-3. PubMed DOI

Takeuchi F., Watanabe S., Baba T., Yuzawa H., Ito T., Morimoto Y., Kuroda M., Cui L., Takahashi M., Ankai A., et al. Whole-Genome Sequencing of Staphylococcus haemolyticus Uncovers the Extreme Plasticity of Its Genome and the Evolution of Human-Colonizing Staphylococcal Species. J. Bacteriol. 2005;187:7292–7308. doi: 10.1128/JB.187.21.7292-7308.2005. PubMed DOI PMC

Kmieciak W., Szewczyk E.M. Are zoonotic Staphylococcus pseudintermedius strains a growing threat for humans? Folia Microbiol. 2018;63:743–747. doi: 10.1007/s12223-018-0615-2. PubMed DOI PMC

Kizerwetter-Świda M., Pławińska-Czarnak J. Staphylococci isolated from animals as a source of genes that confer multidrug resistance to antimicrobial agents of critical importance to public health. Med. Weter. 2017;73:626–631. doi: 10.21521/mw.5789. DOI

Ouoba L.I.I., Mbozo A.B.V., Anyogu A., Obioha P.I., Lingani-Sawadogo H., Sutherland J.P., Jespersen L., Ghoddusi H.B. Environmental heterogeneity of Staphylococcus species from alkaline fermented foods and associated toxins and antimicrobial resistance genetic elements. Int. J. Food Microbiol. 2019;311:108356. doi: 10.1016/j.ijfoodmicro.2019.108356. PubMed DOI

Becker K., Ballhausen B., Köck R., Kriegeskorte A. Methicillin resistance in Staphylococcus isolates: The “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int. J. Med Microbiol. 2014;304:794–804. doi: 10.1016/j.ijmm.2014.06.007. PubMed DOI

Oreiby A., Khalifa H., Eld A., Ahmed A., Shimamoto T. Clinical and molecular characterization of both methicillin-resistant and-sensitive Staphylococcus aureus mastitis. J. Hell. Vet. Med. Soc. 2019;70:1743–1748. doi: 10.12681/jhvms.21805. DOI

Bzdil J., Chaloupka O., Bezrouk Z. Staphylococcus aureus and Bovine Mastitis, Changes in Prevalence and Susceptibility to Antimicrobials in 2007–2016. Veterinářství. 2017;6:466–471. (In Czech)

Ahmed W., Neubauer H., Tomaso H., El Hofy F.I., Monecke S., Abdeltawab A.A., Hotzel H. Characterization of Staphylococci and Streptococci Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens. 2020;9:381. doi: 10.3390/pathogens9050381. PubMed DOI PMC

Gordon R.J., Lowy F.D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 2008;46:S350–S359. doi: 10.1086/533591. PubMed DOI PMC

Foster T.J., Höök M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 1998;6:484–488. doi: 10.1016/S0966-842X(98)01400-0. PubMed DOI

Balachandran M., Bemis D.A., Kania S.A. Expression and function of protein A in Staphylococcus pseudintermedius. Virulence. 2018;9:390–401. doi: 10.1080/21505594.2017.1403710. PubMed DOI PMC

Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI

Oliveira D., Borges A., Simões M. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins. 2018;10:252. doi: 10.3390/toxins10060252. PubMed DOI PMC

Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, Approved Standard, CLSI Document VET01-A4. 4th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2013. p. 70.

Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, CLSI Supplement VET08. 4th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2018. p. 170.

NCCLS . Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard, NCCLS Document M31-A2. 2nd ed. NCCLS; Wayne, PA, USA: 2002.

European Committee on Antimicrobial Susceptibility Testing (EUCAST) Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0, 2018. European Committee on Antimicrobial Susceptibility Testing; Växjö, Sweden: 2020. [(accessed on 25 August 2020)]. Available online: http://www.eucast.org/clinical_breakpoints.

Comité de l’Antibiogramme de la Société Francaise de Microbiologie (CA-SFM) RecommandationsVétérinaries. Société Francaise de Microbiologie; Paris, France: 2018. p. 15.

BD BBL . BBL Sensi-Disc Antimicrobial Susceptibility Test Discs, 8840621JAA(02)2014-03. BBL; Le Pont de Claix, France: 2020. [(accessed on 24 August 2020)]. p. 15. Available online: https://docplayer.cz/46964153-Bbl-sensi-disc-antimicrobial-susceptibility-test-discs.html.

Biopharm . Diagnostics Disc for Susceptibility Testing to Antibiotic Rifaximin. Biopharmacy and Veterinary Drugs Research Institute; Jílové u Prahy, Czech Republic: 2020. p. 1.

Geha D.J., Uhl J.R., Gustaferro C.A., Persing D.H. Multiplex PCR for identification of methicillin-resistant Staphylococci in the clinical laboratory. J. Clin. Microbiol. 1994;32:1768–1772. doi: 10.1128/jcm.32.7.1768-1772.1994. PubMed DOI PMC

Tristan A., Ying L., Bes M., Etienne J., Vandenesch F., Lina G. Use of Multiplex PCR To Identify Staphylococcus aureus Adhesins Involved in Human Hematogenous Infections. J. Clin. Microbiol. 2003;41:4465–4467. doi: 10.1128/JCM.41.9.4465-4467.2003. PubMed DOI PMC

Peacock S.J., Moore C., Justice A., Kantzanou M., Story L., Mackie K., O’Neill G., Day N.P.J. Virulent Combinations of Adhesin and Toxin Genes in Natural Populations of Staphylococcus aureus. Infect. Immun. 2002;70:4987–4996. doi: 10.1128/IAI.70.9.4987-4996.2002. PubMed DOI PMC

Růžičková V., Voller J., Pantůček R., Petráš P., Doškař J. Multiplex PCR for detection of three exfoliative toxin serotype genes in Staphylococcus aureus. Folia Microbiol. 2005;50:499–502. doi: 10.1007/BF02931437. PubMed DOI

Becker K., Roth R., Peters G. Rapid and Specific Detection of Toxigenic Staphylococcus aureus: Use of Two Multiplex PCR Enzyme Immunoassays for Amplification and Hybridization of Staphylococcal Enterotoxin Genes, Exfoliative Toxin Genes, and Toxic Shock Syndrome Toxin 1 Gene. J. Clin. Microbiol. 1998;36:2548–2553. doi: 10.1128/JCM.36.9.2548-2553.1998. PubMed DOI PMC

Fitzgerald J.R., Monday S.R., Foster T.J., Bohach G.A., Hartigan P.J., Meaney W.J., Smyth C.J. Characterization of a Putative Pathogenicity Island from Bovine Staphylococcus aureus Encoding Multiple Superantigens. J. Bacteriol. 2001;183:63–70. doi: 10.1128/JB.183.1.63-70.2001. Erratum in J. Bacteriol. 2001, 166, 4259. PubMed DOI PMC

Madhaiyan M., Wirth J.S., Saravanan V.S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int. J. Syst. Evol. Microbiol. 2020;70:5926–5936. PubMed

Malinowski E., Lassa H., Kłlossowska A., Smulski S., Markiewicz H., Kaczmarowski M. Etiological agents of dairy cows’ mastitis in western part of Poland. Pol. J. Vet. Sci. 2006;9:191–194. PubMed

Bzdil J. Spectrum of Aerobic Microorganisms Isolated from Cattle Milk Samples with Symptoms of Mastitis. Veterinářství. 2015;8:630–635. (In Czech)

Silva V., Hermenegildo S., Ferreira C., Manaia C., Capita R., Alonso-Calleja C., Carvalho I., Pereira J., Maltez L., Capelo J., et al. Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Human Bloodstream Infections: Detection of MLSB Resistance. Antibiotics. 2020;9:375. doi: 10.3390/antibiotics9070375. PubMed DOI PMC

Montazeri E.A., Seyed-Mohammadi S., Dezfuli A.A., Khosravi A.D., Dastoorpoor M., Roointan M., Saki M. Investigation of SCCmec types I–IV in clinical isolates of methicillin-resistant coagulase-negative staphylococci in Ahvaz, Southwest Iran. Biosci. Rep. 2020;40:BSR20200847. doi: 10.1042/BSR20200847. PubMed DOI PMC

Salaberry S.R.S., Saidenberg A., Zuniga E., Melville P.A., Santos F.G.B., Guimarães E.C., Gregori F., Benites N.R. Virulence factors genes of Staphylococcus spp. isolated from caprine subclinical mastitis. Microb. Pathog. 2015;85:35–39. doi: 10.1016/j.micpath.2015.05.007. PubMed DOI

Simojoki H., Hyvönen P., Ferrer C.P., Taponen S., Pyörälä S. Is the biofilm formation and slime producing ability of coagulase-negative staphylococci associated with the persistence and severity of intramammary infection? Vet. Microbiol. 2012;158:344–352. doi: 10.1016/j.vetmic.2012.02.031. PubMed DOI

Bertelloni F., Cagnoli G., Ebani V.V. Virulence and Antimicrobial Resistance in Canine Staphylococcus spp. Isolates. Microorganisms. 2021;9:515. doi: 10.3390/microorganisms9030515. PubMed DOI PMC

Soumya K.R., Philip S., Sugathan S., Mathew J., Radhakrishnan E.K. Virulence factors associated with Coagulase Negative Staphylococci isolated from human infections. 3 Biotech. 2017;7:140. doi: 10.1007/s13205-017-0753-2. PubMed DOI PMC

Piessens V., De Vliegher S., Verbist B., Braem G., Van Nuffel A., De Vuyst L., Heyndrickx M., Van Coillie E. Characterization of coagulase-negative staphylococcus species from cows’ milk and environment based on bap, icaA, and mecA genes and phenotypic susceptibility to antimicrobials and teat dips. J. Dairy Sci. 2012;95:7027–7038. doi: 10.3168/jds.2012-5400. PubMed DOI

Abdel-Moein K.A., Zaher H.M. The Nasal Carriage of Coagulase-Negative Staphylococci Among Animals and Its Public Health Implication. Vector-Borne Zoonotic Dis. 2020;20:897–902. doi: 10.1089/vbz.2020.2656. PubMed DOI

Adame-Gómez R., Castro-Alarcón N., Vences-Velázquez A., Toribio-Jiménez J., Pérez-Valdespino A., Leyva-Vázquez M.A., Ramírez-Peralta A. Genetic diversity and virulence factors of S. aureus isolated from food, humans and animals. Int. J. Microbiol. 2020;2020:1048097. doi: 10.1155/2020/1048097. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...