Polymorphonuclear Cells Show Features of Dysfunctional Activation During Fatal Sepsis
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34966382
PubMed Central
PMC8710474
DOI
10.3389/fimmu.2021.741484
Knihovny.cz E-zdroje
- Klíčová slova
- dysfunctionality, polymorphonuclears, proteomics, sepsis, septic shock, transcriptomics,
- MeSH
- jednotky intenzivní péče MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- neutrofily imunologie patologie MeSH
- prospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- sepse imunologie patologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sepsis and septic shock remain leading causes of morbidity and mortality for patients in the intensive care unit. During the early phase, immune cells produce various cytokines leading to prompt activation of the immune system. Polymorphonuclear leukocytes (PMNs) respond to different signals producing inflammatory factors and executing their antimicrobial mechanisms, resulting in the engulfment and elimination of invading pathogens. However, excessive activation caused by various inflammatory signals produced during sepsis progression can lead to the alteration of PMN signaling and subsequent defects in their functionality. Here, we analyzed samples from 34 patients in septic shock, focusing on PMNs gene expression and proteome changes associated with septic shock. We revealed that, compared to those patients who survived longer than five days, PMNs from patients who had fulminant sepsis were characterized by a dysfunctional hyper-activation, show altered metabolism, and recent exit from the cell cycle and signs of cellular lifespan. We believe that this multi-omics approach, although limited, pinpoints the alterations in PMNs' functionality, which may be rescued by targeted treatments.
Department of Anesthesiology and Intensive Care Faculty of Medicine Masaryk University Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Modern Immunotherapy Institute of Hematology and Blood Transfusion Prague Czechia
International Clinical Research Center St Anne's University Hospital Brno Czechia
Zobrazit více v PubMed
Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. . Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet (2020) 395(10219):200–11. doi: 10.1016/S0140-6736(19)32989-7 PubMed DOI PMC
Zimmerman JE, Kramer AA, Knaus WA. Changes in Hospital Mortality for United States Intensive Care Unit Admissions From 1988 to 2012. Crit Care (2013) 17(2):1–9. doi: 10.1186/cc12695 PubMed DOI PMC
Surbatovic M, Popovic N, Vojvodic D, Milosevic I, Acimovic G, Stojicic M, et al. . Cytokine Profile in Severe Gram-Positive and Gram-Negative Abdominal Sepsis. Sci Rep (2015) 5(1):1–12. doi: 10.1038/srep11355 PubMed DOI PMC
Hortová-Kohoutková M, Lázničková P, Bendíčková K, De Zuani M, Andrejčinová I, Tomášková V, et al. . Differences in Monocyte Subsets Are Associated With Short-Term Survival in Patients With Septic Shock. J Cell Mol Med (2020) 24(21):12504–12. doi: 10.1111/jcmm.15791 PubMed DOI PMC
Sonego F, Castanheira FV, Ferreira RG, Kanashiro A, Leite CA, Nascimento DC, et al. . Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious. Front Immunol (2016) 7:155. doi: 10.3389/fimmu.2016.00155 PubMed DOI PMC
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. . Platelet TLR4 Activates Neutrophil Extracellular Traps to Ensnare Bacteria in Septic Blood. Nat Med (2007) 13(4):463–9. doi: 10.1038/nm1565 PubMed DOI
Salomao R, Martins PS, Brunialti MK, Fernandes Mda L, Martos LS, Mendes ME, et al. . TLR Signaling Pathway in Patients With Sepsis. Shock [Internet] (2008) 30(Suppl 1):73–7. doi: 10.1097/SHK.0b013e318181af2a PubMed DOI
Shen X-FF, Cao K, Jiang JP, Guan W-XX, Du J-FF. Neutrophil Dysregulation During Sepsis: An Overview and Update. Journal of Cellular and Molecular Medicine (2017) 21: (9):1687–97. doi: 10.1111/jcmm.13112 PubMed DOI PMC
Herter JM, Rossaint J, Spieker T, Zarbock A. Adhesion Molecules Involved in Neutrophil Recruitment During Sepsis-Induced Acute Kidney Injury. J Innate Immun (2014) 6(5):597–606. doi: 10.1159/000358238 PubMed DOI PMC
Zonneveld R, Martinelli R, Shapiro NI, Kuijpers TW, Plötz FB, Carman CV. Soluble Adhesion Molecules as Markers for Sepsis and the Potential Pathophysiological Discrepancy in Neonates, Children and Adults. Crit Care (2014) 18(1):1–14. doi: 10.1186/cc13733 PubMed DOI PMC
Perianayagam MC, Balakrishnan VS, Pereira BJ, Jaber BL. C5a Delays Apoptosis of Human Neutrophils via an Extracellular Signal-Regulated Kinase and Bad-Mediated Signalling Pathway. Eur J Clin Invest (2004) 34(1):50–6. doi: 10.1111/j.1365-2362.2004.01273.x PubMed DOI
Luan YY, Yao YM, Xiao XZ, Sheng ZY. Insights Into the Apoptotic Death of Immune Cells in Sepsis. J Interferon Cytokine Res (2015) 35(1):17–22. doi: 10.1089/jir.2014.0069 PubMed DOI PMC
Milot E, Fotouhi-Ardakani N, Filep JG. Myeloid Nuclear Differentiation Antigen, Neutrophil Apoptosis and Sepsis. Front Immunol (2012) 3:397. doi: 10.3389/fimmu.2012.00397 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data With Deseq2. Genome Biol (2014) 15(12):550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Yu G, Wang LG, Han Y, He QY. ClusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. Omi A J Integr Biol (2012) 16(5):284–7. doi: 10.1089/omi.2011.0118 PubMed DOI PMC
R Core Team (2020) . European Environment Agency (2021). Available at: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006.
Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. . Estimating the Population Abundance of Tissue-Infiltrating Immune and Stromal Cell Populations Using Gene Expression. Genome Biol (2016) 17(1):1–20. doi: 10.1186/s13059-016-1070-5 PubMed DOI PMC
Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. . Molecular and Pharmacological Modulators of the Tumor Immune Contexture Revealed by Deconvolution of RNA-Seq Data. Genome Med (2019) 11(1):1–20. doi: 10.1186/s13073-019-0638-6 PubMed DOI PMC
Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al. . Comprehensive Evaluation of Transcriptome-Based Cell-Type Quantification Methods for Immuno-Oncology. Bioinformatics (2019) 35(14):i436–45. doi: 10.1093/bioinformatics/btz363. PubMed DOI PMC
Fischer M, Grossmann P, Padi M, DeCaprio JA. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F Target Gene Analyses Identifies Cell Cycle Gene Regulatory Networks. Nucleic Acids Res (2016) 44(13):6070–86. doi: 10.1093/nar/gkw523 PubMed DOI PMC
Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, et al. . MiXCR: Software for Comprehensive Adaptive Immunity Profiling. Nat Methods (2015) 12:380–1. doi: 10.1038/nmeth.3364 PubMed DOI
Nazarov V, Rumynskiy E. Immunomind/immunarch: 0.6.5: Basic Single-Cell Support (0.6.5). Zenodo (2020). doi: 10.5281/zenodo.3893991 DOI
Bagaev DV, Vroomans RMA, Samir J, Stervbo U, Rius C, Dolton G, et al. . VDJdb in 2019: Database Extension, New Analysis Infrastructure and a T-Cell Receptor Motif Compendium. Nucleic Acids Res (2020) 48(D1):D1057–62. doi: 10.1093/nar/gkz874 PubMed DOI PMC
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. . MetaboAnalyst 4.0: Towards More Transparent and Integrative Metabolomics Analysis. Nucleic Acids Res (2018) 46(W1):W486–94. doi: 10.1093/nar/gky310 PubMed DOI PMC
Okuda S, Watanabe Y, Moriya Y, Kawano S, Yamamoto T, Matsumoto M, et al. . Jpostrepo: An International Standard Data Repository for Proteomes. Nucleic Acids Res (2017) 45(D1):D1107–11. doi: 10.1093/nar/gkw1080 PubMed DOI PMC
Fuchs T, Püellmann K, Scharfenstein O, Eichner R, Stobe E, Becker A, et al. . The Neutrophil Recombinatorial TCR-Like Immune Receptor Is Expressed Across the Entire Human Life Span But Repertoire Diversity Declines in Old Age. Biochem Biophys Res Commun (2012) 419(2):309–15. doi: 10.1016/j.bbrc.2012.02.017 PubMed DOI
Dubois C, Marcé D, Faivre V, Lukaszewicz AC, Junot C, Fenaille F, et al. . High Plasma Level of S100A8/S100A9 and S100A12 at Admission Indicates a Higher Risk of Death in Septic Shock Patients. Sci Rep (2019) 9(1):1–7. doi: 10.1038/s41598-019-52184-8 PubMed DOI PMC
Daviaud F, Grimaldi D, Dechartres A, Charpentier J, Geri G, Marin N, et al. . Timing and Causes of Death in Septic Shock. Ann Intensive Care (2015) 5(1):16. doi: 10.1186/s13613-015-0058-8 PubMed DOI PMC
Majer O, Bourgeois C, Zwolanek F, Lassnig C, Kerjaschki D, Mack M, et al. . Type I Interferons Promote Fatal Immunopathology by Regulating Inflammatory Monocytes and Neutrophils During Candida Infections. PloS Pathog (2012) 8(7):10. doi: 10.1371/journal.ppat.1002811 PubMed DOI PMC
Dejager L, Vandevyver S, Ballegeer M, Van Wonterghem E, An LL, Riggs J, et al. . Pharmacological Inhibition of Type I Interferon Signaling Protects Mice Against Lethal Sepsis. J Infect Dis (2014) 209(6):960–70. doi: 10.1093/infdis/jit600 PubMed DOI
Huys L, Van Hauwermeiren F, Dejager L, Dejonckheere E, Lienenklaus S, Weiss S, et al. . Type I Interferon Drives Tumor Necrosis Factor-Induced Lethal Shock. J Exp Med (2009) 206(9):1873–82. doi: 10.1084/jem.20090213 PubMed DOI PMC
Rackov G, Shokri R, De Mon MÁ, Martínez-A C, Balomenos D. The Role of IFN-β During the Course of Sepsis Progression and Its Therapeutic Potential. Front Immunol (2017) 8:493. doi: 10.3389/fimmu.2017.00493 PubMed DOI PMC
Fuchs T, Puellmann K, Dreyfus DH, Piehler AP, Reuter B, Schwarzbach C, et al. . Immediate Neutrophil-Variable-T Cell Receptor Host Response in Bacterial Meningitis. Front Neurol (2019) 10(APR):307. doi: 10.3389/fneur.2019.00307 PubMed DOI PMC
Puellmann K, Kaminski WE, Vogel M, Nebe CT, Schroeder J, Wolf H, et al. . A Variable Immunoreceptor in a Subpopulation of Human Neutrophils. Proc Natl Acad Sci USA (2006) 103(39):14441–6. doi: 10.1073/pnas.0603406103 PubMed DOI PMC
Ng LG, Ostuni R, Hidalgo A. Heterogeneity of Neutrophils. Nat Rev Immunol (2019) 19:255–65. doi: 10.1038/s41577-019-0141-8 PubMed DOI
De Zuani M, Hortová-Kohoutková M, Andrejčinová I, Tomášková V, Šrámek V, Helán M, et al. . Human Myeloid-Derived Suppressor Cell Expansion During Sepsis Is Revealed by Unsupervised Clustering of Flow Cytometric Data. Eur J Immunol (2021)51:1785–91. doi: 10.1002/eji.202049141 PubMed DOI PMC
Janols H, Bergenfelz C, Allaoui R, Larsson A-M, Rydén L, Björnsson S, et al. . A High Frequency of MDSCs in Sepsis Patients, With the Granulocytic Subtype Dominating in Gram-Positive Cases. J Leukoc Biol (2014) 96(5):685–93. doi: 10.1189/jlb.5HI0214-074R PubMed DOI
Evrard M, Kwok IWH, Chong SZ, Teng KWW, Becht E, Chen J, et al. . Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity (2018) 48(2):364–379.e8. doi: 10.1016/j.immuni.2018.02.002 PubMed DOI
Rodríguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MMB, López-Villegas EO, Sánchez-García FJ. Metabolic Requirements for Neutrophil Extracellular Traps Formation. Immunology (2015) 145(2):213–24. doi: 10.1111/imm.12437 PubMed DOI PMC
Colón DF, Wanderley CW, Franchin M, Silva CM, Hiroki CH, Castanheira FVS, et al. . Neutrophil Extracellular Traps (NETs) Exacerbate Severity of Infant Sepsis. Crit Care (2019) 23(1):1–13. doi: 10.1186/s13054-019-2407-8 PubMed DOI PMC
Boufenzer A, Carrasco K, Jolly L, Brustolin B, Di-Pillo E, Derive M, et al. . Potentiation of NETs Release Is Novel Characteristic of TREM-1 Activation and the Pharmacological Inhibition of TREM-1 Could Prevent From the Deleterious Consequences of NETs Release in Sepsis. Cell Mol Immunol (2021) 18(2):452–60. doi: 10.1038/s41423-020-00591-7 PubMed DOI PMC
Soongsathitanon J, Umsa-Ard W, Thongboonkerd V. Proteomic Analysis of Peripheral Blood Polymorphonuclear Cells (PBMCs) Reveals Alteration of Neutrophil Extracellular Trap (NET) Components in Uncontrolled Diabetes. Mol Cell Biochem (2019) 461(1–2):1–14. doi: 10.1007/s11010-019-03583-y PubMed DOI
Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends Immunol (2019) 40:648–64. doi: 10.1016/j.it.2019.05.003 PubMed DOI
Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in Inflammation. Front Immunol (2018) 9:1298. doi: 10.3389/fimmu.2018.01298 PubMed DOI PMC
Zhao J, Endoh I, Hsu K, Tedla N, Endoh Y, Geczy CL. S100A8 Modulates Mast Cell Function and Suppresses Eosinophil Migration in Acute Asthma. Antioxidants Redox Signal (2011) 14(9):1589–600. doi: 10.1089/ars.2010.3583 PubMed DOI
Sun Y, Lu Y, Engeland CG, Gordon SC, Sroussi HY. The Anti-Oxidative, Anti-Inflammatory, and Protective Effect of S100A8 in Endotoxemic Mice. Mol Immunol (2013) 53(4):443–9. doi: 10.1016/j.molimm.2012.10.002 PubMed DOI PMC
Ernst JD, Hoye E, Blackwood RA, Jaye D. Purification and Characterization of an Abundant Cytosolic Protein From Human Neutrophils That Promotes Ca2+-Dependent Aggregation of Isolated Specific Granules. J Clin Invest (1990) 85(4):1065–71. doi: 10.1172/JCI114537 PubMed DOI PMC
Zhu Q, Pan QZ, Zhong AL, Hu H, Zhao JJ, Tang Y, et al. . Annexin A3 Upregulates the Infiltrated Neutrophil-Lymphocyte Ratio to Remodel the Immune Microenvironment in Hepatocellular Carcinoma. Int Immunopharmacol (2020) 89:107139. doi: 10.1016/j.intimp.2020.107139 PubMed DOI
Su L, Pan P, Yan P, Long Y, Zhou X, Wang X, et al. . Role of Vimentin in Modulating Immune Cell Apoptosis and Inflammatory Responses in Sepsis. Sci Rep (2019) 9(1):1–14. doi: 10.1038/s41598-019-42287-7 PubMed DOI PMC
Toufiq M, Roelands J, Alfaki M, Syed Ahamed Kabeer B, Saadaoui M, Lakshmanan AP, et al. . Annexin A3 in Sepsis: Novel Perspectives From an Exploration of Public Transcriptome Data. Immunology (2020) 161:291–302. doi: 10.1111/imm.13239 PubMed DOI PMC
Wang Y, Wang C, Yang Q, Cheng YL. ANXA3 Silencing Ameliorates Intracranial Aneurysm via Inhibition of the JNK Signaling Pathway. Mol Ther - Nucleic Acids (2019) 17:540–50. doi: 10.1016/j.omtn.2019.06.005 PubMed DOI PMC
Wang L, Li X, Ren Y, Geng H, Zhang Q, Cao L, et al. . Cancer-Associated Fibroblasts Contribute to Cisplatin Resistance by Modulating ANXA3 in Lung Cancer Cells. Cancer Sci (2019) 110(5):1609–20. doi: 10.1111/cas.13998 PubMed DOI PMC
Du R, Liu B, Zhou L, Wang D, He X, Xu X, et al. . Downregulation of Annexin A3 Inhibits Tumor Metastasis and Decreases Drug Resistance in Breast Cancer. Cell Death Dis (2018) 9(2):1–11. doi: 10.1038/s41419-017-0143-z PubMed DOI PMC
Xu R, Yin J, Zhang Y, Zhang S. Annexin A3 Depletion Overcomes Resistance to Oxaliplatin in Colorectal Cancer via the MAPK Signaling Pathway. J Cell Biochem (2019) 120(9):14585–93. doi: 10.1002/jcb.28720 PubMed DOI
Loison F, Zhu H, Karatepe K, Kasorn A, Liu P, Ye K, et al. . Proteinase 3-Dependent Caspase-3 Cleavage Modulates Neutrophil Death and Inflammation. J Clin Invest (2014) 124(10):4445–58. doi: 10.1172/JCI76246 PubMed DOI PMC
Lung Organoids-The Ultimate Tool to Dissect Pulmonary Diseases?