Thermal conductivity of Fe-Si alloys and thermal stratification in Earth's core

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34969863

Light elements in Earth's core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron-electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m-1⋅K-1 for liquid Fe-9Si near the topmost outer core. If Earth's core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core-mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core-mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core.

Zobrazit více v PubMed

Jones C. A., “Thermal and compositional convection in the outer core” in Treatise on Geophysics, Schubert G., Ed. (Elsevier, Oxford, ed. 2, 2015), vol. 8, pp. 115–159.

Nimmo F., “Energetics of the core” in Treatise on Geophysics, Schubert G., Ed. (Elsevier, Oxford, ed. 2, 2015), vol. 8, pp. 27–55.

Buffett B., Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core. Nature 507, 484–487 (2014). PubMed

Helffrich G., Kaneshima S., Outer-core compositional stratification from observed core wave speed profiles. Nature 468, 807–810 (2010). PubMed

Li J., Fei Y., “Experimental constraints on core composition” in Treatise on Geochemistry, Turekian K. K., Ed. (Elsevier, Oxford, 2014), pp. 527–557.

McDonough W. F., “Compositional model for the Earth’s core” in Treatise on Geochemistry, Carlson R. W., Holland H., Turekian K., Eds. (Elsevier, Amsterdam, 2014), vol. 3, pp. 559–577.

Fei Y., Murphy C., Shibazaki Y., Shahar A., Huang H., Thermal equation of state of

Williams Q., Hemley R. J., Hydrogen in the deep Earth. Annu. Rev. Earth Planet. Sci. 29, 365–418 (2001).

Hemley R. J., Mao H.-K., In situ studies of iron under pressure: New windows on the Earth’s Core. Int. Geol. Rev. 43, 1–30 (2001).

Lin J.-F., et al. , Sound velocities of hot dense iron: Birch’s law revisited. Science 308, 1892–1894 (2005). PubMed

Davies C., Pozzo M., Gubbins D., D. Alfè, . Constraints from material properties on the dynamics and evolution of Earth’s core. Nat. Geosci. 8, 678–685 (2015).

Williams Q., The thermal conductivity of Earth’s core: A key geophysical parameter’s constraints and uncertainties. Annu. Rev. Earth Planet. Sci. 46, 47–66 (2018).

Pozzo M., Davies C., Gubbins D., Alfè D., Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485, 355–358 (2012). PubMed

de Koker N., Steinle-Neumann G., Vlček V., Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proc. Natl. Acad. Sci. U.S.A. 109, 4070–4073 (2012). PubMed PMC

Ohta K., Kuwayama Y., Hirose K., Shimizu K., Ohishi Y., Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature 534, 95–98 (2016). PubMed

Konôpková Z., McWilliams R. S., Gómez-Pérez N., Goncharov A. F., Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016). PubMed

Yue S.-Y., Hu M., Insight of the thermal conductivity of ϵ-iron at Earth’s core conditions from the newly developed direct ab initio methodology. J. Appl. Phys. 125, 045102 (2019).

Pourovskii L. V., Mravlje J., Pozzo M., Alfè D., Electronic correlations and transport in iron at Earth’s core conditions. Nat. Commun. 11, 4105 (2020). PubMed PMC

Berrada M., Secco R. A., Review of electrical resistivity measurements and calculations of Fe and Fe-alloys relating to planetary cores. Front. Earth Sci. 9, 732289 (2021).

Yong W., Secco R. A., Littleton J. A. H., Silber R. E., The iron invariance: Implications for thermal convection in Earth’s core. Geophys. Res. Lett. 46, 11065–11070 (2019).

Gomi H., et al. , The high conductivity of iron and thermal evolution of the Earth’s core. Phys. Earth Planet. Inter. 224, 88–103 (2013).

Zhang Y., et al. , Reconciliation of experiments and theory on transport properties of iron and the geodynamo. Phys. Rev. Lett. 125, 078501 (2020). PubMed

Xu J., et al. , Thermal conductivity and electrical resistivity of solid iron at Earth’s core conditions from first-principles. Phys. Rev. Lett. 121, 096601 (2018). PubMed

Olson P., Geophysics. The new core paradox. Science 342, 431–432 (2013). PubMed

Zhang Y., et al. , Transport properties of Fe-Ni-Si alloys at Earth’s core conditions: Insight into the viability of thermal and compositional convection. Earth Planet. Sci. Lett. 553, 116614 (2021).

Zidane M., et al. , Electrical and thermal transport properties of Fe–Ni based ternary alloys in the earth’s inner core: An ab initio study. Phys. Earth Planet. Inter. 301, 106465 (2020).

Wagle F., Steinle-Neumann G., de Koker N., Resistivity saturation in liquid iron–light-element alloys at conditions of planetary cores from first principles computations. C. R. Geosci. 351, 154–162 (2019).

Hsieh W.-P., et al. , Low thermal conductivity of iron-silicon alloys at Earth’s core conditions with implications for the geodynamo. Nat. Commun. 11, 3332 (2020). PubMed PMC

Driscoll P., Bercovici D., On the thermal and magnetic histories of Earth and Venus: Influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter. 236, 36–51 (2014).

O’Rourke J. G., Stevenson D. J., Powering Earth’s dynamo with magnesium precipitation from the core. Nature 529, 387–389 (2016). PubMed

Badro J., Siebert J., Nimmo F., An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature 536, 326–328 (2016). PubMed PMC

Mittal T., et al. , Precipitation of multiple light elements to power Earth’s early dynamo. Earth Planet. Sci. Lett. 532, 116030 (2020).

Du Z., et al. , Insufficient energy from MgO exsolution to power early geodynamo. Geophys. Res. Lett. 44, 11367–11381 (2017).

Takafuji N., Hirose K., Mitome M., Bando Y., Solubilities of O and Si in liquid iron in equilibrium with (Mg, Fe) SiO

Georg R. B., Halliday A. N., Schauble E. A., Reynolds B. C., Silicon in the Earth’s core. Nature 447, 1102–1106 (2007). PubMed

Komabayashi T., et al. , Phase relations in the system Fe–Ni–Si to 200 GPa and 3900 K and implications for Earth’s core. Earth Planet. Sci. Lett. 512, 83–88 (2019).

Fischer R. A., et al. , Equations of state in the Fe–FeSi system at high pressures and temperatures. J. Geophys. Res. Solid Earth 119, 2810–2827 (2014).

Fischer R. A., et al. , Phase relations in the Fe–FeSi system at high pressures and temperatures. Earth Planet. Sci. Lett. 373, 54–64 (2013).

Lin J.-F., Scott H. P., Fischer R. A., Phase relations of Fe-Si alloy in Earth’s core. Geophys. Res. Lett. 36, L06306 (2009).

Mao Z., et al. , Sound velocities of Fe and Fe-Si alloy in the Earth’s core. Proc. Natl. Acad. Sci. U.S.A. 109, 10239–10244 (2012). PubMed PMC

Zhang Y., et al. , Experimental constraints on light elements in the Earth’s outer core. Sci. Rep. 6, 22473 (2016). PubMed PMC

Morrison R. A., Jackson J. M., Sturhahn W., Zhao J., Toellner T. S., High pressure thermoelasticity and sound velocities of Fe-Ni-Si alloys. Phys. Earth Planet. Inter. 294, 106268 (2019).

Liu J., et al. , Seismic parameters of hcp‐Fe alloyed with Ni and Si in the Earth’s inner core. J. Geophys. Res. Solid Earth 121, 610–623 (2016).

Lin J. F., et al. , Sound velocities of iron–nickel and iron–silicon alloys at high pressures. Geophys. Res. Lett. 30, 2112 (2003).

Zhang Y., et al. , Shock compression and melting of an Fe-Ni-Si alloy: Implications for the temperature profile of the Earth’s core and the heat flux across the core-mantle boundary. J. Geophys. Res. Solid Earth 123, 1314–1327 (2018).

Ozawa H., Hirose K., Yonemitsu K., Ohishi Y., High-pressure melting experiments on Fe–Si alloys and implications for silicon as a light element in the core. Earth Planet. Sci. Lett. 456, 47–54 (2016).

Gomi H., Hirose K., Akai H., Fei Y., Electrical resistivity of substitutionally disordered hcp Fe–Si and Fe–Ni alloys: Chemically-induced resistivity saturation in the Earth’s core. Earth Planet. Sci. Lett. 451, 51–61 (2016).

Silber R. E., Secco R. A., Yong W., Littleton J. A., Heat flow in Earth’s core from invariant electrical resistivity of Fe‐Si on the melting boundary to 9 GPa: Do light elements matter? J. Geophys. Res. Solid Earth 124, 5521–5543 (2019).

Pozzo M., Davies C., Gubbins D., Alfè D., Thermal and electrical conductivity of solid iron and iron–silicon mixtures at Earth’s core conditions. Earth Planet. Sci. Lett. 393, 159–164 (2014).

Dziewonski A. M., Anderson D. L., Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

Huang H., et al. , Equation of state for shocked Fe-8.6 wt% Si up to 240 GPa and 4,670 K. J. Geophys. Res. Solid Earth 124, 8300–8312 (2019).

Ikuta D., Ohtani E., Hirao N., Two-phase mixture of iron–nickel–silicon alloys in the Earth’s inner core. Commun. Earth Environ. 2, 225 (2021).

Nakajima Y., et al. , Silicon-depleted present-day Earth's outer core revealed by sound velocity measurements of liquid Fe-Si alloy. J. Geophys. Res. Solid Earth 125, e2020JB019399 (2020).

Williams Q., Manghnani M. H., Secco R. A., Fu S., Limitations on silicon in the outer core: Ultrasonic measurements at high temperatures and high dK/dP values of Fe‐Ni‐Si liquids at high pressures. J. Geophys. Res. Solid Earth 120, 6846–6855 (2015).

Seagle C. T., Cottrell E., Fei Y., Hummer D. R., Prakapenka V. B., Electrical and thermal transport properties of iron and iron‐silicon alloy at high pressure. Geophys. Res. Lett. 40, 5377–5381 (2013).

Inoue H., Suehiro S., Ohta K., Hirose K., Ohishi Y., Resistivity saturation of hcp Fe-Si alloys in an internally heated diamond anvil cell: A key to assessing the Earth’s core conductivity. Earth Planet. Sci. Lett. 543, 116357 (2020).

Anzellini S., Dewaele A., Mezouar M., Loubeyre P., Morard G., Melting of iron at Earth’s inner core boundary based on fast X-ray diffraction. Science 340, 464–466 (2013). PubMed

Ma Y., et al. , In situ X-ray diffraction studies of iron to Earth-core conditions. Phys. Earth Planet. Inter. 143, 455–467 (2004).

Komabayashi T., et al. , Phase transition boundary between fcc and hcp structures in Fe-Si alloy and its implications for terrestrial planetary cores. Am. Mineral. 104, 94–99 (2019).

Shen G., Prakapenka V. B., Rivers M. L., Sutton S. R., Structure of liquid iron at pressures up to 58 GPa. Phys. Rev. Lett. 92, 185701 (2004). PubMed

Pozzo M., Davies C., Gubbins D., Alfè D., Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions. Phys. Rev. B Condens. Matter Mater. Phys. 87, 014110 (2013).

Dobson D., Geophysics: Earth’s core problem. Nature 534, 45 (2016). PubMed

Labrosse S., Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter. 247, 36–55 (2015).

Hsieh W.-P., Deschamps F., Okuchi T., Lin J.-F., Effects of iron on the lattice thermal conductivity of Earth’s deep mantle and implications for mantle dynamics. Proc. Natl. Acad. Sci. U.S.A. 115, 4099–4104 (2018). PubMed PMC

Okuda Y., et al. , Thermal conductivity of Fe-bearing post-perovskite in the Earth’s lowermost mantle. Earth Planet. Sci. Lett. 547, 116466 (2020).

Buffett B. A., Earth’s core and the geodynamo. Science 288, 2007–2012 (2000). PubMed

Schatten K., Sofia S., The Schwarzschild criterion for convection in the presence of a magnetic field. Astrophys. Lett. 21, 93–96 (1981).

Driscoll P. E., Du Z., Geodynamo conductivity limits. Geophys. Res. Lett. 46, 7982–7989 (2019).

Kennett B., Engdahl E., Buland R., Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

Kennett B., Engdahl E., Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465 (1991).

Irving J. C. E., Cottaar S., Lekić V., Seismically determined elastic parameters for Earth’s outer core. Sci. Adv. 4, eaar2538 (2018). PubMed PMC

Mound J., Davies C., Rost S., Aurnou J., Regional stratification at the top of Earth’s core due to core–mantle boundary heat flux variations. Nat. Geosci. 12, 575–580 (2019).

Helffrich G., Kaneshima S., Causes and consequences of outer core stratification. Phys. Earth Planet. Inter. 223, 2–7 (2013).

Brodholt J., Badro J., Composition of the low seismic velocity E′ layer at the top of Earth’s core. Geophys. Res. Lett. 44, 8303–8310 (2017).

Thompson E. C., et al. , High-pressure geophysical properties of Fcc phase FeHX. Geochem. Geophys. Geosyst. 19, 305–314 (2018).

Clesi V., et al. , Low hydrogen contents in the cores of terrestrial planets. Sci. Adv. 4, e1701876 (2018). PubMed PMC

Alfè D., Gillan M. J., Price G. D., Composition and temperature of the Earth’s core constrained by combining ab initio calculations and seismic data. Earth Planet. Sci. Lett. 195, 91–98 (2002).

Li Y., Vočadlo L., Alfè D., Brodholt J., Carbon partitioning between the Earth’s inner and outer core. J. Geophys. Res. Solid Earth 124, 12812–12824 (2019).

Tarduno J. A., et al. , Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327, 1238–1240 (2010). PubMed

Gastine T., Aubert J., Fournier A., Dynamo-based limit to the extent of a stable layer atop Earth’s core. Geophys. J. Int. 222, 1433–1448 (2020).

Giannozzi P., et al. , QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009). PubMed

Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). PubMed

van de Walle A., Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. Calphad 33, 266–278 (2009).

Zunger A., Wei S., Ferreira L. G., Bernard J. E., Special quasirandom structures. Phys. Rev. Lett. 65, 353–356 (1990). PubMed

Schwarz K., Blaha P., Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003).

Bussi G., Donadio D., Parrinello M., Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). PubMed

Ebert H., Ködderitzsch D., Minár J., Calculating condensed matter properties using the KKR-Green’s function method—Recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).

Minár J., Correlation effects in transition metals and their alloys studied using the fully self-consistent KKR-based LSDA+ DMFT scheme. J. Phys. Condens. Matter 23, 253201 (2011).

Greenwood D. A., The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. 71, 585–596 (1958).

Chester G. V., Thellung A., The law of Wiedemann and Franz. Proc. Phys. Soc. 77, 1005–1013 (1961).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...