Marine Invertebrate Peptides: Antimicrobial Peptides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34975806
PubMed Central
PMC8719109
DOI
10.3389/fmicb.2021.785085
Knihovny.cz E-zdroje
- Klíčová slova
- activity, antimicrobial peptides, marine, marine invertebrate, mechanism,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Antimicrobial peptides are an important component of many organisms' innate immune system, with a good inhibitory or killing effect against the invading pathogens. As a type of biological polypeptide with natural immune activities, antimicrobial peptides have a broad spectrum of antibacterial, antiviral, and antitumor activities. Nevertheless, these peptides cause no harm to the organisms themselves. Compared with traditional antibiotics, antimicrobial peptides have the advantage of not producing drug resistance and have a unique antibacterial mechanism, which has attracted widespread attention. In this study, marine invertebrates were classified into arthropods, annelids, mollusks, cnidarians, and tunicata. We then analyzed the types, sources and antimicrobial activities of the antimicrobial peptides in each group. We also reviewed the immune mechanism from three aspects: membrane-targeted direct killing effects, non-membrane targeting effects and immunomodulatory effects. Finally, we discussed their applications and the existing problems facing antimicrobial peptides in actual production. The results are expected to provide theoretical support for future research and applications of antimicrobial peptides in marine invertebrates.
Biomedical Research Centre University Hospital Hradec Králové Hradec Králové Czechia
Department of Chemistry Faculty of Science University of Hradec Králové Hradec Králové Czechia
Zobrazit více v PubMed
Agarwal G., Gabrani R. (2020). Antiviral peptides: identification and validation. PubMed DOI PMC
AlMatar M., Makky E. A., Yakıcı G., Var I., Kayar B., Köksal F. (2018). Antimicrobial peptides as an alternative to anti-tuberculosis drugs. PubMed DOI
Azumi K., Yoshimizu M., Suzuki S., Ezura Y., Yokosawa H. (1990). Inhibitory effect of halocyamine, an antimicrobial substance from ascidian hemocytes, on the growth of fish viruses and marine bacteria. PubMed DOI
Bachere E., Destoumieux D., Bulet P. (2000). Penaeidins, antimicrobial peptides of shrimp: a comparison with other effectors of innate immunity. DOI
Balseiro P., Falcó A., Romero A., Dios S., Martínez-López A., Figueras A., et al. (2011). PubMed DOI PMC
Bartlett T. C., Cuthbertson B. J., Shepard E. F., Chapman R. W., Gross P. S., Warr G. W. (2002). Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, PubMed DOI
Boman H. G. (1995). Peptide antibiotics and their role in innate immunity. PubMed DOI
Brogden K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? PubMed DOI
Charlet M., Chernysh S., Philippe H., Hetru C., Hoffmann J. A., Bulet P. (1996). Innate immunity: isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, PubMed DOI
Chaturvedi P., Bhat R. A. H., Pande A. (2020). Antimicrobial peptides of fish: innocuous alternatives to antibiotics. DOI
Chen C. H., Lu T. K. (2020). Development and challenges of antimicrobial peptides for therapeutic applications. PubMed DOI PMC
Choi H., Lee D. G. (2012). Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. PubMed DOI
Ciumac D., Gong H. N., Hu X. Z., Lu J. R. (2019). Membrane targeting cationic antimicrobial peptides. PubMed DOI
Clemmons A. W., Lindsay S. A., Wasserman S. A. (2015). An effector peptide family required for PubMed DOI PMC
Contreras G., Shirdel I., Braun M. S., Wink M. (2020). Defensins: transcriptional regulation and function beyond antimicrobial activity. PubMed DOI
De Vries D. J., Hall M. R. (1994). Marine biodiversity as a source of chemical diversity.
Destoumieux D., Bulet P., Strub J. M., Van Dorsselaer A., Bachère E. (1999). Recombinat expression and range of activity of penaeidins, antimicrobial peptides from penaeidshrimp. PubMed DOI
Destoumieux D., Munoz M., Bulet P., Bachere E. (2000). Penaeidins, a family of antimicrobial peptides from penaeid shrimp. PubMed DOI PMC
Ely R., Supriya T., Naik C. G. (2004). Antimicrobial activity of marine organisms collected off the coast of South East India.
Hancock R. E., Scott M. G. (2000). The role of antimicrobial peptides in animal defenses. PubMed DOI PMC
Hirakura Y., Kobayashi S., Matsuzaki K. (2002). Specific interactions of the antimicrobial peptide cyclic beta-sheet tachyplesin I with lipopolysaccharides. PubMed DOI
Hong J., Hu J., Ke F. (2016). Experimental induction of bacterial resistance to the antimicrobial peptide tachyplesin I and investigation of the resistance mechanisms. PubMed DOI PMC
Huang H. W. (2000). Action of antimicrobial peptides: two-state model. PubMed DOI
Iwanaga S., Kawabata S. (1998). Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. PubMed DOI
Jang W. S., Kim C. H., Kang M. S., Chae H. J., Son S. M., Seo S. J., et al. (2005). cDNA cloning of halocidin and a new antimicrobial peptide derived from the N-terminus of Ci-META4. PubMed DOI
Jang W. S., Kim K. N., Lee Y. S., Nam M. H., Lee I. H. (2002). Halocidin a new antimicrobial peptide from hemocytes of the solitary tunicate, PubMed DOI
Jiang H. S., Jia W. M., Zhao X. F., Wang J. X. (2015). Four crustins involved in antibacterial responses in PubMed DOI
Joo H. S., Fu C. I., Otto M. (2016). Bacterial strategies of resistance to antimicrobial peptides. PubMed DOI PMC
Kang H. K., Kim C., Seo C. H., Park Y. (2017). The therapeutic applications of antimicrobial peptides (AMPs): a patent review. PubMed DOI
Kang H. K., Lee H. H., Seo C. H., Park Y. (2019). Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. PubMed DOI PMC
Kragol G., Lovas S., Varadi G., Condie B. A., Hoffmann R., Otvos L. (2001). The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. PubMed DOI
Kumar P., Kizhakkedathu J. N., Straus S. K. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility PubMed DOI PMC
Kuzmin D. V., Emel’yanova A. A., Kalashnikova M. B., Panteleev P. V., Ovchinnikova T. V. (2018). PubMed DOI
Lee I. H., Cho Y., Lehrer R. I. (1997a). Styelins, broad-spectrum antimicrobial peptides from the solitary tunicate, PubMed
Lee I. H., Zhao C., Cho Y., Harwig S. S., Cooper E. L., Lehrer R. I. (1997b). PubMed DOI
Lee I. H., Lee Y. S., Kim C. H., Kim C. R., Hong T., Menzel L., et al. (2001a). Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, PubMed DOI
Lee I. H., Zhao C., Nguyen T., Menzel L., Waring A. J., Sherman M. A., et al. (2001b). Clavaspirin, an antibacterial and haemolytic peptide from PubMed
Lee T. H., Hofferek V., Separovic F., Reid G. E., Aguilar M. I. (2019). The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. PubMed DOI
Lehrer R. I., Lee I. H., Menzel L., Waring A., Zhao C. (2001). Clavanins and styelins, alpha-helical antimicrobial peptides from the hemocytes of PubMed DOI
Levashina E. A., Ohresser S., Bulet P., Reichhart J.-M., Hetru C., Hoffmann J. A. (1995). Metchnikowin, a novel immune-inducible proline-rich peptide from PubMed DOI
Li X., Dai J., Tang Y., Li L., Jin G. (2017). Quantitative proteomic profiling of tachyplesin I targets in U251 gliomaspheres. PubMed DOI PMC
Mayer A. M., Hamann M. T. (2004). Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities, affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. PubMed DOI PMC
Menzel L. P., Lee I. H., Sjostrand B., Lehrer R. I. (2002). Immunolocalization of clavanins in PubMed DOI
Mercer D. K., Torres M. D. T., Duay S. S., Lovie E., Simpson L., von Köckritz-Blickwede M., et al. (2020). Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. PubMed DOI PMC
Mitta G., Hubert F., Noël T., Roch P. (1999a). Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel PubMed DOI
Mitta G., Vandenbulcke F., Hubert F., Roch P. (1999b). Mussel defensins are synthesized and processed in granulocytes then released into the plasma after bacterial challenge. PubMed
Mitta G., Hubert F., Dyrynda E. A., Boudry P., Roch P. (2000a). Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. PubMed DOI
Mitta G., Vandenbulcke F., Hubert F., Salzet M., Roch P. (2000b). Involvement of mytilins in mussel antimicrobial defense. PubMed DOI
Miyata T., Tokunaga F., Yoneya T., Yoshikawa K., Iwanaga S., Niwa M., et al. (1989). Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. PubMed DOI
Montero-Alejo V., Corzo G., Porro-Suardíaz J., Pardo-Ruiz Z., Perera E., Rodríguez-Viera L., et al. (2017). Panusin represents a new family of β-defensin-like peptides in invertebrates. PubMed DOI
Moravej H., Morvaej Z., Yazdanparast M., Heiat M., Mirhosseini A., Moosazadeh M. M., et al. (2018). Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. PubMed DOI
Muta T., Fujimoto T., Nakajima H., Iwanaga S. (1990). Tachyplesins isolated from hemocytes of southeast Asian horseshoe crabs ( PubMed DOI
Muta T., Miyata T., Tokunaga F., Nakamura T., Iwanaga S. (1987). Primary structure of anti-lipopolysaccharide factor from American horseshoe crab, PubMed DOI
Nakamura T., Furunaka H., Miyata T., Tokunaga F., Muta T., Iwanaga S., et al. (1988). Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab ( PubMed
Otero-González A. J., Magalhães B. S., Garcia-Villarino M., López-Abarrategui C., Sousa D. A., Dias S. C., et al. (2010). Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. PubMed DOI
Ovchinnikova T. V., Aleshina G. M., Balandin S. V., Krasnosdembskaya A. D., Markelov M. L., Frolova E. I., et al. (2004). Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta PubMed DOI
Ovchinnikova T. V., Balandin S. V., Aleshina G. M., Tagaev A. A., Leonova Y. F., Krasnodembsky E. D., et al. (2006). Aurelin, a novel antimicrobial peptide from jellyfish PubMed DOI
Pan W., Liu X., Ge F., Han J., Zheng T. (2004). Perinerin, a novel antimicrobial peptide purified from the clamworm PubMed DOI
Relf J. M., Chisholm J. R., Kemp G. D., Smith V. J. (1999). Purification and characterization of a cysteine rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, PubMed DOI
Shabir U., Ali S., Magray A. R., Ganai B. A., Firdous P., Hassan T., et al. (2018). Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review. PubMed DOI
Shahmiri M., Enciso M., Mechler A. (2015). Controls and constrains of the membrane disrupting action of aurein1,2. PubMed DOI PMC
Shai Y. (1999). Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. PubMed DOI
Sharma K., Aaghaz S., Shenmar K., Jain R. (2018). Short antimicrobial peptides. PubMed DOI
Shaw P. D., McClure W. O., Van Blaricom G., Sims J., Fenical W., Rude J. (1976).
Sher D., Fishman Y., Zhang M., Lebendiker M., Gaathon A., Mancheño J. M. (2005). Hydralysins, a new category of beta-pore-forming toxins in cnidaria. PubMed DOI
Sierra J. M., Fusté E., Rabanal F., Vinuesa T., Viñas M. (2017). An overview of antimicrobial peptides and the latest advances in their development. PubMed DOI
Silva O. N., Fensterseifer I. C., Rodrigues E. A., Holanda H. H., Novaes N. R., Cunha J. P., et al. (2015). Clavanin A improves outcome of complications from different bacterial infections. PubMed DOI PMC
Sinha S., Zheng L. Z., Mu Y. G., Ng W. J., Bhattacharjya S. (2017). Structure and interactions of A host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. PubMed DOI PMC
Song Y., Lee S. (1993). Characterization and ecological implication of luminous Vibrio-harveyi isolated from tiger shrimp (Penaeus - monodon).
Sonthi M., Cantet F., Toubiana M., Trapani M. R., Parisi M. G., Cammarata M., et al. (2012). Gene expression specificity of the mussel antifungal mytimycin (MytM). PubMed DOI
Sperstad S. V., Haug T., Blencke H. M., Styrvold O. B., Li C., Stensvåg K. (2011). Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. PubMed DOI
Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. PubMed DOI
Sychev S. V., Sukhanov S. V., Panteleev P. V., Shenkarev Z. O., Ovchinnikova T. V. (2018). Marine antimicrobial peptide arenicin adopts a monomeric twisted β-hairpin structure and forms low conductivity pores in zwitterionic lipid bilayers. PubMed DOI
Tasiemski A., Schikorski D., Le Marrec-Croq F., Pontoire-Van Camp C., Boidin-Wichlacz C., Sautière P. E. (2007). Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, PubMed DOI
Tassanakajon A., Amparyup P., Somboonwiwat K., Supungul P. (2010). Cationic antimicrobial peptides in penaeid shrimp. PubMed DOI
Taylor S. W., Craig A. G., Fischer W. H., Park M., Lehrer R. I. (2000). Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. PubMed DOI
Tincu J. A., Menzel L. P., Azimov R., Sands J., Hong T., Waring A. J., et al. (2003). Plicatamide, an antimicrobial octapeptide from PubMed DOI
Tincu J. A., Taylor S. W. (2004). Antimicrobial peptides from marine invertebrates. PubMed DOI PMC
Tossi A., Sandri L., Giangaspero A. (2000). Alpha helical antimicrobial peptide. PubMed
Tzou P., Reichhart J.-M., Lemaitre B. (2002). Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient PubMed DOI PMC
van der Does A. M., Hiemstra P. S., Mookherjee N. (2019). Antimicrobial host defence peptides: immunomodulatory functions and translational prospects. PubMed DOI
van Kan E. J., Demel R. A., Breukink E., van der Bent A., de Kruijff B. (2002). PubMed DOI
van Kan E. J., Demel R. A., van der Bent A., de Kruijff B. (2003a). The role of the abundant phenylalanines in the mode of action of the antimicrobial peptide clavanin. PubMed DOI
van Kan E. J., Ganchev D. N., Snel M. M., Chupin V., van der Bent A., de Kruijff B. (2003b). The peptide antibiotic clavanin A interacts strongly and specifically with lipid bilayers. PubMed DOI
Van Kan E. J., Van der Bent A., Demel A., de Kruijff B. (2001). Membrane activity of the peptide antibiotic clavanin and the importance of its glyicine residues. PubMed DOI
Wang W. J., Gao J. Y., Tong P., Chen H. B. (2017). Antimicrobial peptides: action mechanism, application and improvement strategy.
Wang Y., Zeng Z., Zhang X., Shi Q., Wang C., Hu Z., et al. (2018). Identification and characterization of a novel defensin from Asian green mussel PubMed DOI
Wright R. K. (1981).
Xie H., Wei J., Qin Q. (2016). Antiviral function of Tachyplesin I against iridovirus and nodavirus. PubMed DOI
Yang D., Zhang Q., Wang Q., Chen L., Liu Y., Cong M., et al. (2018). A defensin-like antimicrobial peptide from the manila clam PubMed DOI
Yang L., Harroun T. A., Weiss T. M., Ding L., Huang H. W. (2001). Barrel-stave model or toroidal model? A case study on melittin pores. PubMed DOI PMC
Yang T. T., Ye M. X., You Z. J., Lin Z. H., Bao Y. B. (2012). Antimicrobial peptides and their research progress in mollusk.
Zhang D., He Y., Ye Y., Ma Y., Zhang P., Zhu H. (2019). Little antimicrobial peptides with big therapeutic roles. PubMed DOI
Zhang L., Scott M. G., Yan H., Mayer L. D., Hancock R. E. (2000). Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. PubMed DOI
Zhang X., Gong L. (2020). Antimicrobial mechanism of antimicrobial peptides and research progress.
Zhang Y., Cui P., Wang Y., Zhang S. (2018). Identification and bioactivity analysis of a newly identified defensin from the oyster PubMed DOI