Marine Invertebrate Peptides: Antimicrobial Peptides

. 2021 ; 12 () : 785085. [epub] 20211216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34975806

Antimicrobial peptides are an important component of many organisms' innate immune system, with a good inhibitory or killing effect against the invading pathogens. As a type of biological polypeptide with natural immune activities, antimicrobial peptides have a broad spectrum of antibacterial, antiviral, and antitumor activities. Nevertheless, these peptides cause no harm to the organisms themselves. Compared with traditional antibiotics, antimicrobial peptides have the advantage of not producing drug resistance and have a unique antibacterial mechanism, which has attracted widespread attention. In this study, marine invertebrates were classified into arthropods, annelids, mollusks, cnidarians, and tunicata. We then analyzed the types, sources and antimicrobial activities of the antimicrobial peptides in each group. We also reviewed the immune mechanism from three aspects: membrane-targeted direct killing effects, non-membrane targeting effects and immunomodulatory effects. Finally, we discussed their applications and the existing problems facing antimicrobial peptides in actual production. The results are expected to provide theoretical support for future research and applications of antimicrobial peptides in marine invertebrates.

Zobrazit více v PubMed

Agarwal G., Gabrani R. (2020). Antiviral peptides: identification and validation. PubMed DOI PMC

AlMatar M., Makky E. A., Yakıcı G., Var I., Kayar B., Köksal F. (2018). Antimicrobial peptides as an alternative to anti-tuberculosis drugs. PubMed DOI

Azumi K., Yoshimizu M., Suzuki S., Ezura Y., Yokosawa H. (1990). Inhibitory effect of halocyamine, an antimicrobial substance from ascidian hemocytes, on the growth of fish viruses and marine bacteria. PubMed DOI

Bachere E., Destoumieux D., Bulet P. (2000). Penaeidins, antimicrobial peptides of shrimp: a comparison with other effectors of innate immunity. DOI

Balseiro P., Falcó A., Romero A., Dios S., Martínez-López A., Figueras A., et al. (2011). PubMed DOI PMC

Bartlett T. C., Cuthbertson B. J., Shepard E. F., Chapman R. W., Gross P. S., Warr G. W. (2002). Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, PubMed DOI

Boman H. G. (1995). Peptide antibiotics and their role in innate immunity. PubMed DOI

Brogden K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? PubMed DOI

Charlet M., Chernysh S., Philippe H., Hetru C., Hoffmann J. A., Bulet P. (1996). Innate immunity: isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, PubMed DOI

Chaturvedi P., Bhat R. A. H., Pande A. (2020). Antimicrobial peptides of fish: innocuous alternatives to antibiotics. DOI

Chen C. H., Lu T. K. (2020). Development and challenges of antimicrobial peptides for therapeutic applications. PubMed DOI PMC

Choi H., Lee D. G. (2012). Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. PubMed DOI

Ciumac D., Gong H. N., Hu X. Z., Lu J. R. (2019). Membrane targeting cationic antimicrobial peptides. PubMed DOI

Clemmons A. W., Lindsay S. A., Wasserman S. A. (2015). An effector peptide family required for PubMed DOI PMC

Contreras G., Shirdel I., Braun M. S., Wink M. (2020). Defensins: transcriptional regulation and function beyond antimicrobial activity. PubMed DOI

De Vries D. J., Hall M. R. (1994). Marine biodiversity as a source of chemical diversity.

Destoumieux D., Bulet P., Strub J. M., Van Dorsselaer A., Bachère E. (1999). Recombinat expression and range of activity of penaeidins, antimicrobial peptides from penaeidshrimp. PubMed DOI

Destoumieux D., Munoz M., Bulet P., Bachere E. (2000). Penaeidins, a family of antimicrobial peptides from penaeid shrimp. PubMed DOI PMC

Ely R., Supriya T., Naik C. G. (2004). Antimicrobial activity of marine organisms collected off the coast of South East India.

Hancock R. E., Scott M. G. (2000). The role of antimicrobial peptides in animal defenses. PubMed DOI PMC

Hirakura Y., Kobayashi S., Matsuzaki K. (2002). Specific interactions of the antimicrobial peptide cyclic beta-sheet tachyplesin I with lipopolysaccharides. PubMed DOI

Hong J., Hu J., Ke F. (2016). Experimental induction of bacterial resistance to the antimicrobial peptide tachyplesin I and investigation of the resistance mechanisms. PubMed DOI PMC

Huang H. W. (2000). Action of antimicrobial peptides: two-state model. PubMed DOI

Iwanaga S., Kawabata S. (1998). Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. PubMed DOI

Jang W. S., Kim C. H., Kang M. S., Chae H. J., Son S. M., Seo S. J., et al. (2005). cDNA cloning of halocidin and a new antimicrobial peptide derived from the N-terminus of Ci-META4. PubMed DOI

Jang W. S., Kim K. N., Lee Y. S., Nam M. H., Lee I. H. (2002). Halocidin a new antimicrobial peptide from hemocytes of the solitary tunicate, PubMed DOI

Jiang H. S., Jia W. M., Zhao X. F., Wang J. X. (2015). Four crustins involved in antibacterial responses in PubMed DOI

Joo H. S., Fu C. I., Otto M. (2016). Bacterial strategies of resistance to antimicrobial peptides. PubMed DOI PMC

Kang H. K., Kim C., Seo C. H., Park Y. (2017). The therapeutic applications of antimicrobial peptides (AMPs): a patent review. PubMed DOI

Kang H. K., Lee H. H., Seo C. H., Park Y. (2019). Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. PubMed DOI PMC

Kragol G., Lovas S., Varadi G., Condie B. A., Hoffmann R., Otvos L. (2001). The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. PubMed DOI

Kumar P., Kizhakkedathu J. N., Straus S. K. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility PubMed DOI PMC

Kuzmin D. V., Emel’yanova A. A., Kalashnikova M. B., Panteleev P. V., Ovchinnikova T. V. (2018). PubMed DOI

Lee I. H., Cho Y., Lehrer R. I. (1997a). Styelins, broad-spectrum antimicrobial peptides from the solitary tunicate, PubMed

Lee I. H., Zhao C., Cho Y., Harwig S. S., Cooper E. L., Lehrer R. I. (1997b). PubMed DOI

Lee I. H., Lee Y. S., Kim C. H., Kim C. R., Hong T., Menzel L., et al. (2001a). Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, PubMed DOI

Lee I. H., Zhao C., Nguyen T., Menzel L., Waring A. J., Sherman M. A., et al. (2001b). Clavaspirin, an antibacterial and haemolytic peptide from PubMed

Lee T. H., Hofferek V., Separovic F., Reid G. E., Aguilar M. I. (2019). The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. PubMed DOI

Lehrer R. I., Lee I. H., Menzel L., Waring A., Zhao C. (2001). Clavanins and styelins, alpha-helical antimicrobial peptides from the hemocytes of PubMed DOI

Levashina E. A., Ohresser S., Bulet P., Reichhart J.-M., Hetru C., Hoffmann J. A. (1995). Metchnikowin, a novel immune-inducible proline-rich peptide from PubMed DOI

Li X., Dai J., Tang Y., Li L., Jin G. (2017). Quantitative proteomic profiling of tachyplesin I targets in U251 gliomaspheres. PubMed DOI PMC

Mayer A. M., Hamann M. T. (2004). Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities, affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. PubMed DOI PMC

Menzel L. P., Lee I. H., Sjostrand B., Lehrer R. I. (2002). Immunolocalization of clavanins in PubMed DOI

Mercer D. K., Torres M. D. T., Duay S. S., Lovie E., Simpson L., von Köckritz-Blickwede M., et al. (2020). Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. PubMed DOI PMC

Mitta G., Hubert F., Noël T., Roch P. (1999a). Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel PubMed DOI

Mitta G., Vandenbulcke F., Hubert F., Roch P. (1999b). Mussel defensins are synthesized and processed in granulocytes then released into the plasma after bacterial challenge. PubMed

Mitta G., Hubert F., Dyrynda E. A., Boudry P., Roch P. (2000a). Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. PubMed DOI

Mitta G., Vandenbulcke F., Hubert F., Salzet M., Roch P. (2000b). Involvement of mytilins in mussel antimicrobial defense. PubMed DOI

Miyata T., Tokunaga F., Yoneya T., Yoshikawa K., Iwanaga S., Niwa M., et al. (1989). Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. PubMed DOI

Montero-Alejo V., Corzo G., Porro-Suardíaz J., Pardo-Ruiz Z., Perera E., Rodríguez-Viera L., et al. (2017). Panusin represents a new family of β-defensin-like peptides in invertebrates. PubMed DOI

Moravej H., Morvaej Z., Yazdanparast M., Heiat M., Mirhosseini A., Moosazadeh M. M., et al. (2018). Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. PubMed DOI

Muta T., Fujimoto T., Nakajima H., Iwanaga S. (1990). Tachyplesins isolated from hemocytes of southeast Asian horseshoe crabs ( PubMed DOI

Muta T., Miyata T., Tokunaga F., Nakamura T., Iwanaga S. (1987). Primary structure of anti-lipopolysaccharide factor from American horseshoe crab, PubMed DOI

Nakamura T., Furunaka H., Miyata T., Tokunaga F., Muta T., Iwanaga S., et al. (1988). Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab ( PubMed

Otero-González A. J., Magalhães B. S., Garcia-Villarino M., López-Abarrategui C., Sousa D. A., Dias S. C., et al. (2010). Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. PubMed DOI

Ovchinnikova T. V., Aleshina G. M., Balandin S. V., Krasnosdembskaya A. D., Markelov M. L., Frolova E. I., et al. (2004). Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta PubMed DOI

Ovchinnikova T. V., Balandin S. V., Aleshina G. M., Tagaev A. A., Leonova Y. F., Krasnodembsky E. D., et al. (2006). Aurelin, a novel antimicrobial peptide from jellyfish PubMed DOI

Pan W., Liu X., Ge F., Han J., Zheng T. (2004). Perinerin, a novel antimicrobial peptide purified from the clamworm PubMed DOI

Relf J. M., Chisholm J. R., Kemp G. D., Smith V. J. (1999). Purification and characterization of a cysteine rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, PubMed DOI

Shabir U., Ali S., Magray A. R., Ganai B. A., Firdous P., Hassan T., et al. (2018). Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: a review. PubMed DOI

Shahmiri M., Enciso M., Mechler A. (2015). Controls and constrains of the membrane disrupting action of aurein1,2. PubMed DOI PMC

Shai Y. (1999). Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. PubMed DOI

Sharma K., Aaghaz S., Shenmar K., Jain R. (2018). Short antimicrobial peptides. PubMed DOI

Shaw P. D., McClure W. O., Van Blaricom G., Sims J., Fenical W., Rude J. (1976).

Sher D., Fishman Y., Zhang M., Lebendiker M., Gaathon A., Mancheño J. M. (2005). Hydralysins, a new category of beta-pore-forming toxins in cnidaria. PubMed DOI

Sierra J. M., Fusté E., Rabanal F., Vinuesa T., Viñas M. (2017). An overview of antimicrobial peptides and the latest advances in their development. PubMed DOI

Silva O. N., Fensterseifer I. C., Rodrigues E. A., Holanda H. H., Novaes N. R., Cunha J. P., et al. (2015). Clavanin A improves outcome of complications from different bacterial infections. PubMed DOI PMC

Sinha S., Zheng L. Z., Mu Y. G., Ng W. J., Bhattacharjya S. (2017). Structure and interactions of A host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. PubMed DOI PMC

Song Y., Lee S. (1993). Characterization and ecological implication of luminous Vibrio-harveyi isolated from tiger shrimp (Penaeus - monodon).

Sonthi M., Cantet F., Toubiana M., Trapani M. R., Parisi M. G., Cammarata M., et al. (2012). Gene expression specificity of the mussel antifungal mytimycin (MytM). PubMed DOI

Sperstad S. V., Haug T., Blencke H. M., Styrvold O. B., Li C., Stensvåg K. (2011). Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. PubMed DOI

Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. PubMed DOI

Sychev S. V., Sukhanov S. V., Panteleev P. V., Shenkarev Z. O., Ovchinnikova T. V. (2018). Marine antimicrobial peptide arenicin adopts a monomeric twisted β-hairpin structure and forms low conductivity pores in zwitterionic lipid bilayers. PubMed DOI

Tasiemski A., Schikorski D., Le Marrec-Croq F., Pontoire-Van Camp C., Boidin-Wichlacz C., Sautière P. E. (2007). Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, PubMed DOI

Tassanakajon A., Amparyup P., Somboonwiwat K., Supungul P. (2010). Cationic antimicrobial peptides in penaeid shrimp. PubMed DOI

Taylor S. W., Craig A. G., Fischer W. H., Park M., Lehrer R. I. (2000). Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. PubMed DOI

Tincu J. A., Menzel L. P., Azimov R., Sands J., Hong T., Waring A. J., et al. (2003). Plicatamide, an antimicrobial octapeptide from PubMed DOI

Tincu J. A., Taylor S. W. (2004). Antimicrobial peptides from marine invertebrates. PubMed DOI PMC

Tossi A., Sandri L., Giangaspero A. (2000). Alpha helical antimicrobial peptide. PubMed

Tzou P., Reichhart J.-M., Lemaitre B. (2002). Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient PubMed DOI PMC

van der Does A. M., Hiemstra P. S., Mookherjee N. (2019). Antimicrobial host defence peptides: immunomodulatory functions and translational prospects. PubMed DOI

van Kan E. J., Demel R. A., Breukink E., van der Bent A., de Kruijff B. (2002). PubMed DOI

van Kan E. J., Demel R. A., van der Bent A., de Kruijff B. (2003a). The role of the abundant phenylalanines in the mode of action of the antimicrobial peptide clavanin. PubMed DOI

van Kan E. J., Ganchev D. N., Snel M. M., Chupin V., van der Bent A., de Kruijff B. (2003b). The peptide antibiotic clavanin A interacts strongly and specifically with lipid bilayers. PubMed DOI

Van Kan E. J., Van der Bent A., Demel A., de Kruijff B. (2001). Membrane activity of the peptide antibiotic clavanin and the importance of its glyicine residues. PubMed DOI

Wang W. J., Gao J. Y., Tong P., Chen H. B. (2017). Antimicrobial peptides: action mechanism, application and improvement strategy.

Wang Y., Zeng Z., Zhang X., Shi Q., Wang C., Hu Z., et al. (2018). Identification and characterization of a novel defensin from Asian green mussel PubMed DOI

Wright R. K. (1981).

Xie H., Wei J., Qin Q. (2016). Antiviral function of Tachyplesin I against iridovirus and nodavirus. PubMed DOI

Yang D., Zhang Q., Wang Q., Chen L., Liu Y., Cong M., et al. (2018). A defensin-like antimicrobial peptide from the manila clam PubMed DOI

Yang L., Harroun T. A., Weiss T. M., Ding L., Huang H. W. (2001). Barrel-stave model or toroidal model? A case study on melittin pores. PubMed DOI PMC

Yang T. T., Ye M. X., You Z. J., Lin Z. H., Bao Y. B. (2012). Antimicrobial peptides and their research progress in mollusk.

Zhang D., He Y., Ye Y., Ma Y., Zhang P., Zhu H. (2019). Little antimicrobial peptides with big therapeutic roles. PubMed DOI

Zhang L., Scott M. G., Yan H., Mayer L. D., Hancock R. E. (2000). Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. PubMed DOI

Zhang X., Gong L. (2020). Antimicrobial mechanism of antimicrobial peptides and research progress.

Zhang Y., Cui P., Wang Y., Zhang S. (2018). Identification and bioactivity analysis of a newly identified defensin from the oyster PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...