Emergence of methicillin resistance predates the clinical use of antibiotics

. 2022 Feb ; 602 (7895) : 135-141. [epub] 20220105

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu historické články, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34987223

Grantová podpora
G1001787 Medical Research Council - United Kingdom
MR/N002660/1 Medical Research Council - United Kingdom
MR/P007201/1 Medical Research Council - United Kingdom
MR/S00291X/1 Medical Research Council - United Kingdom

Odkazy

PubMed 34987223
PubMed Central PMC8810379
DOI 10.1038/s41586-021-04265-w
PII: 10.1038/s41586-021-04265-w
Knihovny.cz E-zdroje

The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two β-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.

Advanced Light and Electron Microscopy Robert Koch Institute Berlin Germany

Animal Health Trust Newmarket UK

Antimicrobial Resistance and Healthcare Associated Infections Reference Unit UK Health Security Agency London UK

Bacteriology Department and French National Reference Center for Staphylococci Hospices Civils de Lyon University of Lyon Lyon France

Clinical Microbiology and Public Health Laboratory UK Health Security Agency Addenbrooke's Hospital Cambridge UK

Department of Animal Health and Antimicrobial Strategies National Veterinary Institute Uppsala Sweden

Department of Animal Science and Food Processing Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague Czech Republic

Department of Bacteria Parasites and Fungi Statens Serum Institut Copenhagen Denmark

Department of Bacteriology Animal and Plant Health Agency Weybridge UK

Department of Biology and Ecology University of Ostrava Ostrava Czech Republic

Department of Biomedical Science and Veterinary Public Health Swedish University of Agricultural Sciences Uppsala Sweden

Department of Chemistry and Bioscience Aalborg University Aalborg Denmark

Department of Genetics University of Cambridge Cambridge UK

Department of Medicine University of Cambridge Cambridge UK

Department of Microbiology Public Health Agency of Sweden Solna Sweden

Department of Physiology Development and Neuroscience University of Cambridge Cambridge UK

Department of Public Health and Primary Care University of Cambridge Cambridge UK

Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen Frederiksberg Denmark

Department of Veterinary Medicine University of Cambridge Cambridge UK

Department of Zoology Charles University Prague Czech Republic

Dipartimento di Medicina Veterinaria Università degli Studi di Milano Lodi Italy

European Programme for Public Health Microbiology Training Stockholm Sweden

Expert Microbiology Unit Department of Health Security Finnish Institute for Health and Welfare Helsinki Finland

Friedrich Loeffler Institute of Medical Microbiology University Medicine Greifswald Greifswald Germany

Infectious Disease Preparedness Statens Serum Institut Copenhagen Denmark

Institute for Veterinary Food Science Justus Liebig University Giessen Giessen Germany

Institute of Infection and Immunity St George's University of London London UK

Institute of Microbiology and Epizootics Veterinary Faculty Freie Universität Berlin Berlin Germany

Institute of Microbiology University of Veterinary Medicine Vienna Austria

Institute of Veterinary Bacteriology University of Bern Bern Switzerland

Intervacc AB Stockholm Stockholm Sweden

Laboratory for Medical Microbiology Ghent University Hospital Ghent Belgium

Laboratory of Microbiology and Infectious Diseases The Rockefeller University New York NY USA

Laboratory of Molecular Genetics ITQB NOVA Oeiras Portugal

Microbiology Unit Finnish Food Authority Helsinki Finland

National Food Institute Technical University of Denmark Kongens Lyngby Denmark

National Reference Center for Antimicrobial Resistance and Nosocomial Infections Institute for Hygiene Microbiology and Tropical Medicine Ordensklinikum Linz Elisabethinen Linz Austria

National Reference Centre for Staphylococci and Enterococci Division Nosocomial Pathogens and Antibiotic Resistances Department of Infectious Diseases Robert Koch Institute Wernigerode Germany

National Reference Centre Staphylococcus aureus Department of Microbiology Hôpital Erasme Université libre de Bruxelles Brussels Belgium

Norwegian Veterinary Institute Ås Norway

Quality Milk Production Services Animal Health Diagnostic Center Cornell University Ithaca NY USA

Royal Botanic Gardens Kew Richmond UK

School of Life Sciences and Department of Statistics University of Warwick Warwick UK

School of Medicine University of St Andrews St Andrews UK

Scottish MRSA Reference Laboratory NHS Greater Glasgow and Clyde Stobhill Hospital Glasgow UK

Servicio de Microbiología Complejo Asistencial Universitario de Salamanca Salamanca Spain

Servicio de Microbiología Hospital Universitario Lucus Augusti Lugo Spain

SRUC Veterinary Services Inverness UK

The Royal School of Veterinary Studies and Roslin Institute University of Edinburgh Easter Bush UK

Vet Med Labor GmbH Kornwestheim Germany

Wellcome Sanger Institute Hinxton UK

Wildlife Conservation Research Unit Department of Zoology University of Oxford Tubney UK

Komentář v

PubMed

Zobrazit více v PubMed

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010;74:417–433. PubMed PMC

European Centre for Disease Prevention and Control, European Medicines Agencies. The Bacterial Challenge: Time to React. A Call to Narrow the Gap Between Multidrug-Resistant Bacteria in the EU and the Development of New Antibacterial Agentshttps://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf (2009).

Jevons MP. “Celbenin”—resistant Staphylococci. Br. Med. J. 1961;1:124–125.

Harkins CP, et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017;18:130. PubMed PMC

Chambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009;7:629–641. PubMed PMC

Price LB, et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio. 2012;3:e00305-11. PubMed PMC

Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibioticshttp://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (WHO, 2017).

Rasmussen SL, et al. European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PLoS ONE. 2019;14:e0222031. PubMed PMC

Bengtsson B, et al. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 2017;207:103–107. PubMed

García-Álvarez L, et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 2011;11:595–603. PubMed PMC

Paterson GK, Harrison EM, Holmes MA. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2014;22:42–47. PubMed PMC

Marples MJ, Smith JMB. The hedgehog as a source of human ringworm. Nature. 1960;188:867–868. PubMed

English MP, Evans CD, Hewitt M, Warin RP. “Hedgehog ringworm”. Br. Med. J. 1962;1:149–151. PubMed PMC

Smith JMB, Marples MJ. A natural reservoir of penicillin-resistant strains of Staphylococcus aureus. Nature. 1964;201:844. PubMed

Smith JMB, Marples MJ. Dermatophyte lesions in the hedgehog as a reservoir of penicillin-resistant staphylococci. J. Hyg. 1965;63:293–303. PubMed PMC

Smith JMB. Staphylococcus aureus strains associated with the hedgehog Erinaceus europaeus. J. Hyg. Camb. 1965;63:293–303. PubMed PMC

Morris P, English MP. Trichophyton mentagrophytes var. erinacei in British hedgehogs. Sabouraudia. 1969;7:122–128. PubMed

Le Barzic C, et al. Detection and control of dermatophytosis in wild European hedgehogs (Erinaceus europaeus) admitted to a French wildlife rehabilitation centre. J. Fungi. 2021;7:74. PubMed PMC

Dube F, Söderlund R, Salomonsson ML, Troell K, Börjesson S. Benzylpenicillin-producing Trichophyton erinacei and methicillin resistant Staphylococcus aureus carrying the mecC gene on European hedgehogs: a pilot-study. BMC Microbiol. 2021;21:212. PubMed PMC

Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–913. PubMed

Brockie RE. Distribution and abundance of the hedgehog (Erinaceus europaeus) L. in New Zealand, 1869–1973. N. Z. J. Zool. 1975;2:445–462.

van den Berg MA, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 2008;26:1161–1168. PubMed

Ullán RV, Campoy S, Casqueiro J, Fernández FJ, Martín JF. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem. Biol. 2007;14:329–339. PubMed

Kitano K, et al. A novel penicillin produced by strains of the genus. Paecilomyces. J. Ferment. Technol. 1976;54:705–711.

Petersen A, et al. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect. 2013;19:E16–E22. PubMed

Richardson EJ, et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2018;2:1468–1478. PubMed PMC

Holden MTG, et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013;23:653–664. PubMed PMC

Strauß L, et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl Acad. Sci. USA. 2017;114:E10596–E10604. PubMed PMC

Nübel U, et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA. 2008;105:14130–14135. PubMed PMC

Rasmussen SL, Nielsen JL, Jones OR, Berg TB, Pertoldi C. Genetic structure of the European hedgehog (Erinaceus europaeus) in Denmark. PLoS ONE. 2020;15:e0227205. PubMed PMC

Hansen JE, et al. LA-MRSA CC398 in dairy cattle and veal calf farms indicates spillover from pig production. Front. Microbiol. 2019;10:2733. PubMed PMC

Eriksson J, Espinosa-Gongora C, Stamphøj I, Larsen AR, Guardabassi L. Carriage frequency, diversity and methicillin resistance of in Danish small ruminants. Vet. Microbiol. 2013;163:110–115. PubMed

Danish Integrated Antimicrobial Resistance Monitoring and Research Programme. DANMAP 2019: Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria From Food Animals, Food, and Humans in DENMARKhttps://www.danmap.org/-/media/Sites/danmap/Downloads/Reports/2019/DANMAP_2019.ashx?la=da&hash=AA1939EB449203EF0684440AC1477FFCE2156BA5 (2020).

Veterinary Medicines Directorate. UK Veterinary Antibiotic Resistance and Sales Surveillance Reporthttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950126/UK-VARSS_2019_Report__2020-TPaccessible.pdf (2020).

Harrison EM, et al. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 2013;5:509–515. PubMed PMC

Loncaric I, et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 2019;230:138–144. PubMed

Gómez P, et al. Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J. Antimicrob. Chemother. 2016;71:53–57. PubMed

Kim C, et al. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. J. Biol. Chem. 2012;287:36854–36863. PubMed PMC

Tahlan K, Jensen SE. Origins of the β-lactam rings in natural products. J. Antibiot. 2013;66:401–419. PubMed

Pantůček R, et al. Staphylococcus edaphicus sp. nov. isolated in Antarctica harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environment. Appl. Environ. Microbiol. 2018;84:e01746–17. PubMed PMC

D’Costa VM, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–461. PubMed

Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J. 2009;3:243–251. PubMed

Forsberg KJ, et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337:1107–1111. PubMed PMC

Forsberg KJ, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–616. PubMed PMC

Coll F, et al. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe. 2020;1:e328–e335. PubMed PMC

Bankevich A, et al. SPAdes: a new genome assembly algorithm and its application to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. PubMed PMC

Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000;38:1008–1015. PubMed PMC

Van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, Strijp JA. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 2006;188:1310–1315. PubMed PMC

Viana, D. et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involved SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 77, 1583–1594 (2010). PubMed

Rooijakkers SHM, et al. Staphylococcal complement inhibitor: structure and active sites. J. Immunol. 2007;179:2989–2998. PubMed

Arndt D, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. PubMed PMC

Bortolaia V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020;75:3491–3500. PubMed PMC

Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant database with KMA. BMC Bioinform. 2018;19:397. PubMed PMC

Sahl JW, et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb. Genom. 2016;2:e000074. PubMed PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrow-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC

McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC

DePristo MA, et al. A framework for variation discovery and genotyping using next-generation sequencing data. Nat. Genet. 2011;43:491–498. PubMed PMC

Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002;30:2478–2483. PubMed PMC

Kurz S, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. PubMed PMC

Guindon S, Gasquel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52:696–704. PubMed

Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. PubMed

Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genome. PLoS Comput. Biol. 2015;11:e1004041. PubMed PMC

Didelot X, et al. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 2018;46:e134. PubMed PMC

Didelot X, Siveroni I, Volz EM. Additive uncorrelated relaxed clock models for the dating of genomic epidemiology phylogenies. Mol. Biol. Evol. 2021;38:307–317. PubMed PMC

Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R News. 2006;6:7–11.

Volz EM, Frost SD. Scalable relaxed clock phylogenetic dating. Virus Evol. 2017;3:vex025.

Wang M, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. PubMed PMC

Adusumilli R, Mallick P. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 2017;1550:339–368. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...