Emergence of methicillin resistance predates the clinical use of antibiotics
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem
Grantová podpora
G1001787
Medical Research Council - United Kingdom
MR/N002660/1
Medical Research Council - United Kingdom
MR/P007201/1
Medical Research Council - United Kingdom
MR/S00291X/1
Medical Research Council - United Kingdom
PubMed
34987223
PubMed Central
PMC8810379
DOI
10.1038/s41586-021-04265-w
PII: 10.1038/s41586-021-04265-w
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky dějiny metabolismus MeSH
- Arthrodermataceae genetika metabolismus MeSH
- beta-laktamy metabolismus MeSH
- dějiny 20. století MeSH
- fylogeneze MeSH
- geografická kartografie MeSH
- ježkovití metabolismus mikrobiologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus genetika metabolismus MeSH
- molekulární evoluce MeSH
- One Health MeSH
- peniciliny biosyntéza MeSH
- rezistence na methicilin genetika MeSH
- selekce (genetika) genetika MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Dánsko MeSH
- Evropa MeSH
- Nový Zéland MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-laktamy MeSH
- peniciliny MeSH
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two β-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.
Advanced Light and Electron Microscopy Robert Koch Institute Berlin Germany
Animal Health Trust Newmarket UK
Department of Bacteria Parasites and Fungi Statens Serum Institut Copenhagen Denmark
Department of Bacteriology Animal and Plant Health Agency Weybridge UK
Department of Biology and Ecology University of Ostrava Ostrava Czech Republic
Department of Chemistry and Bioscience Aalborg University Aalborg Denmark
Department of Genetics University of Cambridge Cambridge UK
Department of Medicine University of Cambridge Cambridge UK
Department of Microbiology Public Health Agency of Sweden Solna Sweden
Department of Physiology Development and Neuroscience University of Cambridge Cambridge UK
Department of Public Health and Primary Care University of Cambridge Cambridge UK
Department of Veterinary Medicine University of Cambridge Cambridge UK
Department of Zoology Charles University Prague Czech Republic
Dipartimento di Medicina Veterinaria Università degli Studi di Milano Lodi Italy
European Programme for Public Health Microbiology Training Stockholm Sweden
Infectious Disease Preparedness Statens Serum Institut Copenhagen Denmark
Institute for Veterinary Food Science Justus Liebig University Giessen Giessen Germany
Institute of Infection and Immunity St George's University of London London UK
Institute of Microbiology and Epizootics Veterinary Faculty Freie Universität Berlin Berlin Germany
Institute of Microbiology University of Veterinary Medicine Vienna Austria
Institute of Veterinary Bacteriology University of Bern Bern Switzerland
Intervacc AB Stockholm Stockholm Sweden
Laboratory for Medical Microbiology Ghent University Hospital Ghent Belgium
Laboratory of Microbiology and Infectious Diseases The Rockefeller University New York NY USA
Laboratory of Molecular Genetics ITQB NOVA Oeiras Portugal
Microbiology Unit Finnish Food Authority Helsinki Finland
National Food Institute Technical University of Denmark Kongens Lyngby Denmark
Norwegian Veterinary Institute Ås Norway
Quality Milk Production Services Animal Health Diagnostic Center Cornell University Ithaca NY USA
Royal Botanic Gardens Kew Richmond UK
School of Life Sciences and Department of Statistics University of Warwick Warwick UK
School of Medicine University of St Andrews St Andrews UK
Scottish MRSA Reference Laboratory NHS Greater Glasgow and Clyde Stobhill Hospital Glasgow UK
Servicio de Microbiología Complejo Asistencial Universitario de Salamanca Salamanca Spain
Servicio de Microbiología Hospital Universitario Lucus Augusti Lugo Spain
SRUC Veterinary Services Inverness UK
The Royal School of Veterinary Studies and Roslin Institute University of Edinburgh Easter Bush UK
Vet Med Labor GmbH Kornwestheim Germany
Wellcome Sanger Institute Hinxton UK
Wildlife Conservation Research Unit Department of Zoology University of Oxford Tubney UK
Zobrazit více v PubMed
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010;74:417–433. PubMed PMC
European Centre for Disease Prevention and Control, European Medicines Agencies. The Bacterial Challenge: Time to React. A Call to Narrow the Gap Between Multidrug-Resistant Bacteria in the EU and the Development of New Antibacterial Agentshttps://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf (2009).
Jevons MP. “Celbenin”—resistant Staphylococci. Br. Med. J. 1961;1:124–125.
Harkins CP, et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017;18:130. PubMed PMC
Chambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009;7:629–641. PubMed PMC
Price LB, et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio. 2012;3:e00305-11. PubMed PMC
Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibioticshttp://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (WHO, 2017).
Rasmussen SL, et al. European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PLoS ONE. 2019;14:e0222031. PubMed PMC
Bengtsson B, et al. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 2017;207:103–107. PubMed
García-Álvarez L, et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 2011;11:595–603. PubMed PMC
Paterson GK, Harrison EM, Holmes MA. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2014;22:42–47. PubMed PMC
Marples MJ, Smith JMB. The hedgehog as a source of human ringworm. Nature. 1960;188:867–868. PubMed
English MP, Evans CD, Hewitt M, Warin RP. “Hedgehog ringworm”. Br. Med. J. 1962;1:149–151. PubMed PMC
Smith JMB, Marples MJ. A natural reservoir of penicillin-resistant strains of Staphylococcus aureus. Nature. 1964;201:844. PubMed
Smith JMB, Marples MJ. Dermatophyte lesions in the hedgehog as a reservoir of penicillin-resistant staphylococci. J. Hyg. 1965;63:293–303. PubMed PMC
Smith JMB. Staphylococcus aureus strains associated with the hedgehog Erinaceus europaeus. J. Hyg. Camb. 1965;63:293–303. PubMed PMC
Morris P, English MP. Trichophyton mentagrophytes var. erinacei in British hedgehogs. Sabouraudia. 1969;7:122–128. PubMed
Le Barzic C, et al. Detection and control of dermatophytosis in wild European hedgehogs (Erinaceus europaeus) admitted to a French wildlife rehabilitation centre. J. Fungi. 2021;7:74. PubMed PMC
Dube F, Söderlund R, Salomonsson ML, Troell K, Börjesson S. Benzylpenicillin-producing Trichophyton erinacei and methicillin resistant Staphylococcus aureus carrying the mecC gene on European hedgehogs: a pilot-study. BMC Microbiol. 2021;21:212. PubMed PMC
Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–913. PubMed
Brockie RE. Distribution and abundance of the hedgehog (Erinaceus europaeus) L. in New Zealand, 1869–1973. N. Z. J. Zool. 1975;2:445–462.
van den Berg MA, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 2008;26:1161–1168. PubMed
Ullán RV, Campoy S, Casqueiro J, Fernández FJ, Martín JF. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem. Biol. 2007;14:329–339. PubMed
Kitano K, et al. A novel penicillin produced by strains of the genus. Paecilomyces. J. Ferment. Technol. 1976;54:705–711.
Petersen A, et al. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect. 2013;19:E16–E22. PubMed
Richardson EJ, et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2018;2:1468–1478. PubMed PMC
Holden MTG, et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013;23:653–664. PubMed PMC
Strauß L, et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl Acad. Sci. USA. 2017;114:E10596–E10604. PubMed PMC
Nübel U, et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA. 2008;105:14130–14135. PubMed PMC
Rasmussen SL, Nielsen JL, Jones OR, Berg TB, Pertoldi C. Genetic structure of the European hedgehog (Erinaceus europaeus) in Denmark. PLoS ONE. 2020;15:e0227205. PubMed PMC
Hansen JE, et al. LA-MRSA CC398 in dairy cattle and veal calf farms indicates spillover from pig production. Front. Microbiol. 2019;10:2733. PubMed PMC
Eriksson J, Espinosa-Gongora C, Stamphøj I, Larsen AR, Guardabassi L. Carriage frequency, diversity and methicillin resistance of in Danish small ruminants. Vet. Microbiol. 2013;163:110–115. PubMed
Danish Integrated Antimicrobial Resistance Monitoring and Research Programme. DANMAP 2019: Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria From Food Animals, Food, and Humans in DENMARKhttps://www.danmap.org/-/media/Sites/danmap/Downloads/Reports/2019/DANMAP_2019.ashx?la=da&hash=AA1939EB449203EF0684440AC1477FFCE2156BA5 (2020).
Veterinary Medicines Directorate. UK Veterinary Antibiotic Resistance and Sales Surveillance Reporthttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950126/UK-VARSS_2019_Report__2020-TPaccessible.pdf (2020).
Harrison EM, et al. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 2013;5:509–515. PubMed PMC
Loncaric I, et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 2019;230:138–144. PubMed
Gómez P, et al. Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J. Antimicrob. Chemother. 2016;71:53–57. PubMed
Kim C, et al. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. J. Biol. Chem. 2012;287:36854–36863. PubMed PMC
Tahlan K, Jensen SE. Origins of the β-lactam rings in natural products. J. Antibiot. 2013;66:401–419. PubMed
Pantůček R, et al. Staphylococcus edaphicus sp. nov. isolated in Antarctica harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environment. Appl. Environ. Microbiol. 2018;84:e01746–17. PubMed PMC
D’Costa VM, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–461. PubMed
Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J. 2009;3:243–251. PubMed
Forsberg KJ, et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337:1107–1111. PubMed PMC
Forsberg KJ, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–616. PubMed PMC
Coll F, et al. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe. 2020;1:e328–e335. PubMed PMC
Bankevich A, et al. SPAdes: a new genome assembly algorithm and its application to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. PubMed PMC
Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000;38:1008–1015. PubMed PMC
Van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, Strijp JA. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 2006;188:1310–1315. PubMed PMC
Viana, D. et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involved SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 77, 1583–1594 (2010). PubMed
Rooijakkers SHM, et al. Staphylococcal complement inhibitor: structure and active sites. J. Immunol. 2007;179:2989–2998. PubMed
Arndt D, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. PubMed PMC
Bortolaia V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020;75:3491–3500. PubMed PMC
Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant database with KMA. BMC Bioinform. 2018;19:397. PubMed PMC
Sahl JW, et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb. Genom. 2016;2:e000074. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrow-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC
DePristo MA, et al. A framework for variation discovery and genotyping using next-generation sequencing data. Nat. Genet. 2011;43:491–498. PubMed PMC
Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002;30:2478–2483. PubMed PMC
Kurz S, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. PubMed PMC
Guindon S, Gasquel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52:696–704. PubMed
Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. PubMed
Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genome. PLoS Comput. Biol. 2015;11:e1004041. PubMed PMC
Didelot X, et al. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 2018;46:e134. PubMed PMC
Didelot X, Siveroni I, Volz EM. Additive uncorrelated relaxed clock models for the dating of genomic epidemiology phylogenies. Mol. Biol. Evol. 2021;38:307–317. PubMed PMC
Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R News. 2006;6:7–11.
Volz EM, Frost SD. Scalable relaxed clock phylogenetic dating. Virus Evol. 2017;3:vex025.
Wang M, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016;34:828–837. PubMed PMC
Adusumilli R, Mallick P. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 2017;1550:339–368. PubMed
Aberrant microbiomes are associated with increased antibiotic resistance gene load in hybrid mice