The role of central autonomic nervous system dysfunction in Takotsubo syndrome: a systematic review
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, systematický přehled
PubMed
34997877
PubMed Central
PMC8898237
DOI
10.1007/s10286-021-00844-z
PII: 10.1007/s10286-021-00844-z
Knihovny.cz E-zdroje
- Klíčová slova
- Amygdala, Brain connectivity, Brain–heart axis, Insular cortex, Takotsubo syndrome,
- MeSH
- autonomní nervový systém MeSH
- lidé MeSH
- mozek MeSH
- prognóza MeSH
- takotsubo kardiomyopatie * etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- systematický přehled MeSH
INTRODUCTION: Takotsubo syndrome (TTS), also known as stress cardiomyopathy or "broken heart" syndrome, is a mysterious condition that often mimics an acute myocardial infarction. Both are characterized by left ventricular systolic dysfunction. However, this dysfunction is reversible in the majority of TTS patients. PURPOSE: Recent studies surprisingly demonstrated that TTS, initially perceived as a benign condition, has a long-term prognosis akin to myocardial infarction. Therefore, the health consequences and societal impact of TTS are not trivial. The pathophysiological mechanisms of TTS are not yet completely understood. In the last decade, attention has been increasingly focused on the putative role of the central nervous system in the pathogenesis of TTS. CONCLUSION: In this review, we aim to summarize the state of the art in the field of the brain-heart axis, regional structural and functional brain abnormalities, and connectivity aberrancies in TTS.
1st Department of Neurology St Anne's University Hospital Brno Czech Republic
Department of Internal Medicine and Cardiology University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Ghadri J-R, Wittstein IS, Prasad A, et al. International expert consensus document on Takotsubo syndrome (part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J. 2018;39(22):2032–2046. doi: 10.1093/eurheartj/ehy076. PubMed DOI PMC
Ghadri J-R, Kato K, Cammann V, et al. Long-term prognosis of patients with Takotsubo syndrome. J Am Coll Cardiol. 2018;72(8):874–882. doi: 10.1016/j.jacc.2018.06.016. PubMed DOI
Pelliccia F, Kaski JC, Crea F, Camici PG. Pathophysiology of Takotsubo syndrome. Circulation. 2017;135(24):2426–2441. doi: 10.1161/CIRCULATIONAHA.116.027121. PubMed DOI
Templin C, Ghadri JR, Diekmann J, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373(10):929–938. doi: 10.1056/NEJMoa1406761. PubMed DOI
Napp LC, Cammann VL, Jaguszewski M, et al. Coexistence and outcome of coronary artery disease in Takotsubo syndrome. Eur Heart J. 2020;41(34):3255–3268. doi: 10.1093/eurheartj/ehaa210. PubMed DOI
Wittstein IS, Thiemann DR, Lima JAC, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;14:1. PubMed
Paur H, Wright PT, Sikkel MB, et al. High levels of circulating epinephrine trigger apical cardiodepression in a β2 -adrenergic receptor/Gi–dependent manner: a new model of Takotsubo cardiomyopathy. Circulation. 2012;126(6):697–706. doi: 10.1161/CIRCULATIONAHA.112.111591. PubMed DOI PMC
Porto I, Della Bona R, Leo A, et al. Stress cardiomyopathy (tako-tsubo) triggered by nervous system diseases: a systematic review of the reported cases. Int J Cardiol. 2013;167(6):2441–2448. doi: 10.1016/j.ijcard.2013.01.031. PubMed DOI
Finsterer J, Wahbi K. CNS disease triggering Takotsubo stress cardiomyopathy. Int J Cardiol. 2014;177(2):322–329. doi: 10.1016/j.ijcard.2014.08.101. PubMed DOI
Furlan AJ. Stroke: the heart of the matter. Stroke. 1986;17(4):583–585. doi: 10.1161/01.STR.17.4.583. PubMed DOI
Fye WB. Carl Ludwig and the Leipzig Physiological Institute: “a factory of new knowledge”. Circulation. 1986;74(5):920–928. doi: 10.1161/01.CIR.74.5.920. PubMed DOI
Scheitz JF, Ghadri JR, Templin C. Brain-heart interaction revisited: Takotsubo syndrome secondary to seizures. Int J Cardiol. 2020;299:71–72. doi: 10.1016/j.ijcard.2019.08.036. PubMed DOI
Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens. 2010;4(4):174–182. doi: 10.1016/j.jash.2010.05.001. PubMed DOI
Marafioti V, Turri G, Carbone V, et al. Association of prolonged QTc interval with Takotsubo cardiomyopathy: a neurocardiac syndrome inside the mystery of the insula of Reil. Clin Cardiol. 2018;41(4):551–555. doi: 10.1002/clc.22910. PubMed DOI PMC
Oppenheimer SM, Cechetto DF. Cardiac chronotropic organization of the rat insular cortex. Brain Res. 1990;533(1):66–72. doi: 10.1016/0006-8993(90)91796-J. PubMed DOI
Oppenheimer SM, Gelb A, Girvin JP, et al. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42(9):1727–1727. doi: 10.1212/WNL.42.9.1727. PubMed DOI
Oppenheimer S. Cerebrogenic cardiac arrhythmias: cortical lateralization and clinical significance. Clin Auton Res. 2006;16(1):6–11. doi: 10.1007/s10286-006-0276-0. PubMed DOI PMC
Colivicchi F, Bassi A, Santini M, et al. Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke. 2004;35(9):2094–2098. doi: 10.1161/01.STR.0000138452.81003.4c. PubMed DOI
Tahsili-Fahadan P, Geocadin RG. Heart-brain axis: effects of neurologic injury on cardiovascular function. Circ Res. 2017;120(3):559–572. doi: 10.1161/CIRCRESAHA.116.308446. PubMed DOI
Suzuki H, Matsumoto Y, Kaneta T, et al. Evidence for brain activation in patients with Takotsubo cardiomyopathy. Circ J. 2014 doi: 10.1253/circj.CJ-13-1276. PubMed DOI
Radfar A, Abohashem S, Osborne MT, et al. Stress-associated neurobiological activity associates with the risk for and timing of subsequent Takotsubo syndrome. Eur Heart J. 2021;42(19):1898–1908. doi: 10.1093/eurheartj/ehab029. PubMed DOI PMC
Tawakol A, Ishai A, Takx RA, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet. 2017;389(10071):834–845. doi: 10.1016/S0140-6736(16)31714-7. PubMed DOI PMC
Hiestand T, Hänggi J, Klein C, et al. Takotsubo syndrome associated with structural brain alterations of the limbic system. J Am Coll Cardiol. 2018;71(7):809–811. doi: 10.1016/j.jacc.2017.12.022. PubMed DOI
Dichtl W, Tuovinen N, Barbieri F, et al. Functional neuroimaging in the acute phase of Takotsubo syndrome: volumetric and functional changes of the right insular cortex. Clin Res Cardiol. 2020;109(9):1107–1113. doi: 10.1007/s00392-020-01602-3. PubMed DOI PMC
Pereira VH, Marques P, Magalhães R, et al. Central autonomic nervous system response to autonomic challenges is altered in patients with a previous episode of Takotsubo cardiomyopathy. Eur Heart J Acute Cardiovasc Care. 2016;5(2):152–163. doi: 10.1177/2048872615568968. PubMed DOI
Sabisz A, Treder N, Fijałkowska M, et al. Brain resting state functional magnetic resonance imaging in patients with Takotsubo cardiomyopathy an inseparable pair of brain and heart. Int J Cardiol. 2016;224:376–381. doi: 10.1016/j.ijcard.2016.09.067. PubMed DOI
Templin C, Hiestand T, Levinson RA, et al. Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur Heart J. 2019 doi: 10.1093/eurheartj/ehz068. PubMed DOI PMC
Silva AR, Magalhães R, Arantes C, et al. Brain functional connectivity is altered in patients with Takotsubo syndrome. Sci Rep. 2019;9(1):4187. doi: 10.1038/s41598-019-40695-3. PubMed DOI PMC
Klein C, Hiestand T, Ghadri J-R, et al. Takotsubo syndrome—predictable from brain imaging data. Sci Rep. 2017;7(1):5434. doi: 10.1038/s41598-017-05592-7. PubMed DOI PMC
Akashi YJ, Nakazawa K, Sakakibara M, et al. 123I-MIBG myocardial scintigraphy in patients with “takotsubo” cardiomyopathy. J Nucl Med. 2004;45(7):1121–1127. PubMed
Vaccaro A, Despas F, Delmas C, et al. Direct evidences for sympathetic hyperactivity and baroreflex impairment in Tako Tsubo cardiopathy. PLoS One. 2014;9(3):e93278. doi: 10.1371/journal.pone.0093278. PubMed DOI PMC
Y-Hassan S. Autonomic neurocardiogenic syndrome is stonewalled by the universal definition of myocardial infarction. World J Cardiol. 2020;12(6):231–247. doi: 10.4330/wjc.v12.i6.231. PubMed DOI PMC
Norcliffe-Kaufmann L, Kaufmann H, Martinez J, Katz SD, Tully L, Reynolds HR. Autonomic findings in Takotsubo cardiomyopathy. Am J Cardiol. 2016;117(2):206–213. doi: 10.1016/j.amjcard.2015.10.028. PubMed DOI
Berganzo K, Ciordia R, Gómez-Esteban JC, et al. Tako-tsubo cardiomyopathy in a patient with bilateral lesions in the dorsal medulla. Clin Auton Res. 2011;21(1):65–67. doi: 10.1007/s10286-010-0088-0. PubMed DOI
Gobeske KT, Sarano ME, Fugate JE, et al. Medulla oblongata hemorrhage and reverse Takotsubo cardiomyopathy. Neurocrit Care. 2018;29(3):508–511. doi: 10.1007/s12028-017-0482-8. PubMed DOI
Risseeuw F, Masrori P, Baar I, et al. The brain-heart link: a case report of a critically located multiple sclerosis lesion in the brainstem leading to recurrent Takotsubo syndrome. Front Cardiovasc Med. 2021;8:674118. doi: 10.3389/fcvm.2021.674118. PubMed DOI PMC
Nagai M, Dote K, Kato M, et al. The insular cortex and takotsubo cardiomyopathy. Curr Pharm Des. 2017;23:879–888. doi: 10.2174/1381612822666161006123530. PubMed DOI
Nagai M, Kobayashi Y, Kobatake H, et al. Happy heart syndrome: a case of Takotsubo syndrome with left internal carotid artery occlusion. Clin Auton Res. 2020;30(4):347–350. doi: 10.1007/s10286-020-00696-z. PubMed DOI
Oppenheimer S, Cechetto D. The insular cortex and the regulation of cardiac function. In: Terjung R, editor. Comprehensive physiology. Hoboken: John Wiley and Sons Inc.; 2016. pp. 1081–1133. PubMed