Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play

. 2022 Jan 20 ; 126 (2) : 376-386. [epub] 20220110

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35001614

The interaction between a protein and external electric field (EF) can alter its structure and dynamical behavior, which has a potential impact on the biological function of proteins and cause uncertain health consequences. Conversely, the application of EFs of judiciously selected intensity and frequency can help to treat disease, and optimization of this requires a greater understanding of EF-induced effects underpinning basic protein biophysics. In the present study, chignolin─an artificial protein sufficiently small to undergo fast-folding events and transitions─was selected as an ideal prototype to investigate how, and to what extent, externally applied electric fields may manipulate or influence protein-folding phenomena. Nonequilibrium molecular dynamics (NEMD) simulations have been performed of solvated chignolin to determine the distribution of folding states and their underlying transition dynamics, in the absence and presence of externally applied electric fields (both static and alternating); a key focus has been to ascertain how folding pathways are altered in an athermal sense by external fields. Compared to zero-field conditions, a dramatically different─indeed, bifurcated─behavior of chignolin-folding processes emerges between static- and alternating-field scenarios, especially vis-à-vis incipient stages of hydrophobic-core formation: in alternating fields, fold-state populations diversified, with an attendant acceleration of state-hopping folding kinetics, featuring the concomitant emergence of a new, quasi-stable structure compared to the native structure, in field-shifted energy landscapes.

Zobrazit více v PubMed

Harada R.; Shigeta Y. Efficient Conformational Search Based on Structural Dissimilarity Sampling: Applications for Reproducing Structural Transitions of Proteins. J. Chem. Theory Comput. 2017, 13, 1411–1423. 10.1021/acs.jctc.6b01112. PubMed DOI

Miao Y.; Feher V. A.; McCammon J. A. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. J. Chem. Theory Comput. 2015, 11, 3584–3595. 10.1021/acs.jctc.5b00436. PubMed DOI PMC

Suenaga A.; Narumi T.; Futatsugi N.; Yanai R.; Ohno Y.; Okimoto N.; Taiji M. Folding Dynamics of 10-Residue β-Hairpin Peptide Chignolin. Chem.—Asian J. 2007, 2, 591–598. 10.1002/asia.200600385. PubMed DOI

Ghaani M. R.; English N. J. Non-Equilibrium Molecular-Dynamics Study of Electromagnetic-Field-Induced Propane-Hydrate Dissociation. J. Chem. Phys. 2018, 149, 12470210.1063/1.5029457. PubMed DOI

Lee J.; Shin S. Understanding β-Hairpin Formation by Molecular Dynamics Simulations of Unfolding. Biophys. J. 2001, 81, 2507–2516. 10.1016/S0006-3495(01)75896-1. PubMed DOI PMC

Zhang H.; Zhang N.; Fang F. Fabrication of High-Performance Nickel/Graphene Oxide Composite Coatings Using Ultrasonic-Assisted Electrodeposition. Ultrason. Sonochem. 2020, 62, 10485810.1016/j.ultsonch.2019.104858. PubMed DOI

de Pomerai D. I.; Smith B.; Dawe A.; North K.; Smith T.; Archer D. B.; Duce I. R.; Jones D.; Candido E. P. M. Microwave Radiation Can Alter Protein Conformation without Bulk Heating. FEBS Lett. 2003, 543, 93–97. 10.1016/S0014-5793(03)00413-7. PubMed DOI

English N. J.; Mooney D. A. Denaturation of Hen Egg White Lysozyme in Electromagnetic Fields: A Molecular Dynamics Study. J. Chem. Phys. 2007, 126, 09110510.1063/1.2515315. PubMed DOI

Bernardi M.; Ghaani M. R.; English N. J. Ionic Conductivity along Transmembrane-Electropores in Human Aquaporin 4: Calcium Effects from Non-Equilibrium Molecular Dynamics. Mol. Phys. 2019, 117, 3783–3790. 10.1080/00268976.2019.1665725. DOI

Bernardi M.; Marracino P.; Ghaani M. R.; Liberti M.; Del Signore F.; Burnham C. J.; Gárate J.-A.; Apollonio F.; English N. J. Human Aquaporin 4 Gating Dynamics under Axially Oriented Electric-Field Impulses: A Non-Equilibrium Molecular-Dynamics Study. J. Chem. Phys. 2018, 149, 24510210.1063/1.5044665. PubMed DOI

Astrakas L.; Gousias C.; Tzaphlidou M. Electric Field Effects on Chignolin Conformation. J. Appl. Phys. 2011, 109, 09470210.1063/1.3585867. DOI

Bohr H.; Bohr J. Microwave-Enhanced Folding and Denaturation of Globular Proteins. Phys. Rev. E 2000, 61, 4310–4314. 10.1103/PhysRevE.61.4310. PubMed DOI

Todorova N.; Bentvelzen A.; English N. J.; Yarovsky I. Electromagnetic-Field Effects on Structure and Dynamics of Amyloidogenic Peptides. J. Chem. Phys. 2016, 144, 08510110.1063/1.4941108. PubMed DOI

Hardell L.; Carlberg M.; Söderqvist F.; Hansson Mild K. Meta-Analysis of Long-Term Mobile Phone Use and the Association with Brain Tumours. Int. J. Oncol. 2008, 32, 1097–1103. 10.3892/ijo.32.5.1097. PubMed DOI

Goodman E. M.; Greenebaum B.; Marron M. T. Effects of Electromagnetic Fields on Molecules and Cells. Int. Rev. Cytol. 1995, 158, 279–338. 10.1016/s0074-7696(08)62489-4. PubMed DOI

Sheppard A. R.; Swicord M. L.; Balzano Q. Quantitative Evaluations of Mechanisms of Radiofrequency Interactions with Biological Molecules and Processes. Health Phys. 2008, 95, 365–396. 10.1097/01.HP.0000319903.20660.37. PubMed DOI

Honda S.; Yamasaki K.; Sawada Y.; Morii H. 10 Residue Folded Peptide Designed by Segment Statistics. Structure 2004, 12, 1507–1518. 10.1016/j.str.2004.05.022. PubMed DOI

Satoh D.; Shimizu K.; Nakamura S.; Terada T. Folding Free-Energy Landscape of a 10-Residue Mini-Protein, Chignolin. FEBS Lett. 2006, 580, 3422–3426. 10.1016/j.febslet.2006.05.015. PubMed DOI

Dinner A. R.; Lazaridis T.; Karplus M. Understanding β-Hairpin Formation. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9068–9073. 10.1073/pnas.96.16.9068. PubMed DOI PMC

Garcia A. E.; Sanbonmatsu K. Y. Exploring the Energy Landscape of a β Hairpin in Explicit Solvent. Proteins: Struct., Funct., Bioinf. 2001, 42, 345–354. 10.1002/1097-0134(20010215)42:3<345::AID-PROT50>3.0.CO;2-H. PubMed DOI

Pande V. S.; Rokhsar D. S. Molecular Dynamics Simulations of Unfolding and Refolding of a β-Hairpin Fragment of Protein G. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9062–9067. 10.1073/pnas.96.16.9062. PubMed DOI PMC

Astrakas L. G.; Gousias C.; Tzaphlidou M. Structural Destabilization of Chignolin under the Influence of Oscillating Electric Fields. J. Appl. Phys. 2012, 111, 07470210.1063/1.3699389. DOI

Karplus M.; Petsko G. A. Molecular Dynamics Simulations in Biology. Nature 1990, 347, 631–639. 10.1038/347631a0. PubMed DOI

Budi A.; Legge F. S.; Treutlein H.; Yarovsky I. Comparative Study of Insulin Chain-B in Isolated and Monomeric Environments under External Stress. J. Phys. Chem. B 2008, 112, 7916–7924. 10.1021/jp800350v. PubMed DOI

Garate J.-A.; English N. J.; MacElroy J. M. D. Human Aquaporin 4 Gating Dynamics in Dc and Ac Electric Fields: A Molecular Dynamics Study. J. Chem. Phys. 2011, 134, 05511010.1063/1.3529428. PubMed DOI

Reale R.; English N. J.; Garate J. A.; Marracino P.; Liberti M.; Apollonio F. Human Aquaporin 4 Gating Dynamics under and after Nanosecond-Scale Static and Alternating Electric-Field Impulses: A Molecular Dynamics Study of Field Effects and Relaxation. J. Chem. Phys. 2013, 139, 20510110.1063/1.4832383. PubMed DOI

Budi A.; Legge F. S.; Treutlein H.; Yarovsky I. Effect of Frequency on Insulin Response to Electric Field Stress. J. Phys. Chem. B 2007, 111, 5748–5756. 10.1021/jp067248g. PubMed DOI

Toschi F.; Lugli F.; Biscarini F.; Zerbetto F. Effects of Electric Field Stress on a β-Amyloid Peptide. J. Phys. Chem. B 2009, 113, 369–376. 10.1021/jp807896g. PubMed DOI

Yamauchi M.; Okumura H. Development of Isothermal-Isobaric Replica-Permutation Method for Molecular Dynamics and Monte Carlo Simulations and Its Application to Reveal Temperature and Pressure Dependence of Folded, Misfolded, and Unfolded States of Chignolin. J. Chem. Phys. 2017, 147, 18410710.1063/1.4996431. PubMed DOI

Honda S.; Akiba T.; Kato Y. S.; Sawada Y.; Sekijima M.; Ishimura M.; Ooishi A.; Watanabe H.; Odahara T.; Harata K. Crystal Structure of a Ten-Amino Acid Protein. J. Am. Chem. Soc. 2008, 130, 15327–15331. 10.1021/ja8030533. PubMed DOI

Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. 10.1002/jcc.20291. PubMed DOI

Sorin E. J.; Pande V. S. Exploring the Helix-Coil Transition via All-Atom Equilibrium Ensemble Simulations. Biophys. J. 2005, 88, 2472–2493. 10.1529/biophysj.104.051938. PubMed DOI PMC

Abascal J. L. F.; Vega C. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. J. Chem. Phys. 2005, 123, 23450510.1063/1.2121687. PubMed DOI

Florová P.; Sklenovský P.; Banáš P.; Otyepka M. Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact. J. Chem. Theory Comput. 2010, 6, 3569–3579. 10.1021/ct1003687. PubMed DOI

Benavides A. L.; Portillo M. A.; Chamorro V. C.; Espinosa J. R.; Abascal J. L. F.; Vega C. A Potential Model for Sodium Chloride Solutions Based on the TIP4P/2005 Water Model. J. Chem. Phys. 2017, 147, 10450110.1063/1.5001190. PubMed DOI

Aggarwal L.; Biswas P. Hydration Water Distribution around Intrinsically Disordered Proteins. J. Phys. Chem. B 2018, 122, 4206–4218. 10.1021/acs.jpcb.7b11091. PubMed DOI

Ghaani M. R.; Kuslaik P. G.; English N. J. Massive generation of metastable bulk nanobubbles in water by external electric fields. Sci. Adv. 2020, 6, aaz009410.1126/sciadv.aaz0094. PubMed DOI PMC

English N. J.; Carroll D. G. Prediction of Henry's law constants by a quantitative structure property relationship and neural networks. J. Chem. Info. Comput. Sci. 2001, 41, 1150–1161. 10.1021/ci010361d. PubMed DOI

Evans M. W.; Lie G. C.; Clementi E. Molecular Dynamics of Liquid Water in a Circularly Polarized External Field. J. Chem. Phys. 1987, 87, 6040–6045. 10.1063/1.453476. DOI

Mitsutake A.; Takano H. Relaxation Mode Analysis and Markov State Relaxation Mode Analysis for Chignolin in Aqueous Solution near a Transition Temperature. J. Chem. Phys. 2015, 143, 12411110.1063/1.4931813. PubMed DOI

Daura X.; Gademann K.; Jaun B.; Seebach D.; van Gunsteren W. F.; Mark A. E. Peptide Folding: When Simulation Meets Experiment. Angew. Chem., Int. Ed. 1999, 38, 236–240. 10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M. DOI

Harada R.; Kitao A. Exploring the Folding Free Energy Landscape of a β-Hairpin Miniprotein, Chignolin, Using Multiscale Free Energy Landscape Calculation Method. J. Phys. Chem. B 2011, 115, 8806–8812. 10.1021/jp2008623. PubMed DOI

Sumi T.; Koga K. Theoretical Analysis on Thermodynamic Stability of Chignolin. Sci. Rep. 2019, 9, 518610.1038/s41598-019-41518-1. PubMed DOI PMC

McKiernan K. A.; Husic B. E.; Pande V. S. Modeling the Mechanism of CLN025 Beta-Hairpin Formation. J. Chem. Phys. 2017, 147, 10410710.1063/1.4993207. PubMed DOI PMC

Xu W.; Lai T.; Yang Y.; Mu Y. Reversible Folding Simulation by Hybrid Hamiltonian Replica Exchange. J. Chem. Phys. 2008, 128, 17510510.1063/1.2911693. PubMed DOI

Li Y.-Q. Structure Changes of Soybean Protein Isolates by Pulsed Electric Fields. Phys. Procedia 2012, 33, 132–137. 10.1016/j.phpro.2012.05.040. DOI

Nandi P. K.; Burnham C. J.; English N. J. Electro-Suppression of Water Nano-Droplets’ Solidification in No Man’s Land: Electromagnetic Fields’ Entropic Trapping of Supercooled Water. J. Chem. Phys. 2018, 148, 04450310.1063/1.5004509. PubMed DOI

Reale R.; English N. J.; Garate J. A.; Marracino P.; Liberti M.; Apollonio F. Human Aquaporin 4 Gating Dynamics under and after Nanosecond-scale Static and Alternating Electric-Field Impulses: A Molecular Dynamics Study of Field Effects and Relaxation. J. Chem. Phys. 2013, 139, 20510110.1063/1.4832383. PubMed DOI

Garate J. A.; English N. J.; MacElroy J. M. D. Human Aquaporin 4 Gating Dynamics in dc and ac Electric Fields: A Molecular Dynamics study. J. Chem. Phys. 2011, 134, 05511010.1063/1.3529428. PubMed DOI

English N. J.; Solomentsev G. Y.; O’Brien P. Nonequilibrium Molecular Dynamics Study of Electric and Low-Frequency Microwave Fields on Hen Egg White Lysozyme. J. Chem. Phys. 2009, 131, 03510610.1063/1.3184794. PubMed DOI

Solomentsev G. Y.; English N. J.; Mooney D. A. Hydrogen Bond Perturbation in hen egg white lysozyme by external electromagnetic fields: a non-equilibrium molecular dynamics study. J. Chem. Phys. 2010, 133, 23510210.1063/1.3518975. PubMed DOI

Rodriguez A.; Mokoema P.; Corcho F.; Bisetty K.; Perez J. J. Computational Study of the Free Energy Landscape of the Miniprotein CLN025 in Explicit and Implicit Solvent. J. Phys. Chem. B 2011, 115, 1440–1449. 10.1021/jp106475c. PubMed DOI

Enemark S.; Kurniawan N. A.; Rajagopalan R. β-Hairpin Forms by Rolling up from C-Terminal: Topological Guidance of Early Folding Dynamics. Sci. Rep. 2012, 2, 64910.1038/srep00649. PubMed DOI PMC

Lovell S. C.; Davis I. W.; Arendall W. B.; De Bakker P. I. W.; Word J. M.; Prisant M. G.; Richardson J. S.; Richardson D. C. Structure Validation by Cα Geometry: φ,ψ and Cβ Deviation. Proteins: Struct., Funct., Genet. 2003, 50, 437–450. 10.1002/prot.10286. PubMed DOI

Terada T.; Satoh D.; Mikawa T.; Ito Y.; Shimizu K. Understanding the Roles of Amino Acid Residues in Tertiary Structure Formation of Chignolin by Using Molecular Dynamics Simulation. Proteins: Struct., Funct., Genet. 2008, 73, 621–631. 10.1002/prot.22100. PubMed DOI

Kührová P.; De Simone A.; Otyepka M.; Best R. B. Force-Field Dependence of Chignolin Folding and Misfolding: Comparison with Experiment and Redesign. Biophys. J. 2012, 102, 1897–1906. 10.1016/j.bpj.2012.03.024. PubMed DOI PMC

Hatfield M. P.; Murphy R. F.; Lovas S. Molecular Dynamics Analysis of the Conformations of a β-hairpin Miniprotein. J. Phys. Chem. B 2010, 114, 3028–3037. 10.1021/jp910465e. PubMed DOI PMC

Hatfield M. P.; Murphy R. F.; Lovas S. VCD Spectroscopic Properties of the β-hairpin Forming Miniprotein CLN025 in Various Solvents. Biopolymers 2010, 93, 442–450. 10.1002/bip.21356. PubMed DOI PMC

Maruyama Y.; Koroku S.; Imai M.; Takeuchi K.; Mitsutake A. Mutation-Induced Change in Chignolin Stability from π-turn to α-turn. RSC Adv. 2020, 10, 22797–22808. 10.1039/D0RA01148G. PubMed DOI PMC

English N. J.; MacElroy J. M. D. Atomistic simulations of liquid water using Lekner electrostatics. Mol. Phys. 2002, 100, 3753–3769. 10.1080/0026897021000028438. DOI

English N. J. Effect of electrostatics techniques on the estimation of thermal conductivity via equilibrium molecular dynamics simulation: application to methane hydrate. Molec. Phys. 2008, 106, 1887–1898. 10.1080/00268970802360348. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular dynamics simulation dataset of a kinesin on tubulin heterodimers in electric field

. 2024 Feb ; 52 () : 109765. [epub] 20231104

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...