Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35001614
PubMed Central
PMC8785190
DOI
10.1021/acs.jpcb.1c06857
Knihovny.cz E-zdroje
- MeSH
- elektřina MeSH
- oligopeptidy chemie MeSH
- sbalování proteinů * MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chignolin MeSH Prohlížeč
- oligopeptidy MeSH
The interaction between a protein and external electric field (EF) can alter its structure and dynamical behavior, which has a potential impact on the biological function of proteins and cause uncertain health consequences. Conversely, the application of EFs of judiciously selected intensity and frequency can help to treat disease, and optimization of this requires a greater understanding of EF-induced effects underpinning basic protein biophysics. In the present study, chignolin─an artificial protein sufficiently small to undergo fast-folding events and transitions─was selected as an ideal prototype to investigate how, and to what extent, externally applied electric fields may manipulate or influence protein-folding phenomena. Nonequilibrium molecular dynamics (NEMD) simulations have been performed of solvated chignolin to determine the distribution of folding states and their underlying transition dynamics, in the absence and presence of externally applied electric fields (both static and alternating); a key focus has been to ascertain how folding pathways are altered in an athermal sense by external fields. Compared to zero-field conditions, a dramatically different─indeed, bifurcated─behavior of chignolin-folding processes emerges between static- and alternating-field scenarios, especially vis-à-vis incipient stages of hydrophobic-core formation: in alternating fields, fold-state populations diversified, with an attendant acceleration of state-hopping folding kinetics, featuring the concomitant emergence of a new, quasi-stable structure compared to the native structure, in field-shifted energy landscapes.
Faculty of Science University of South Bohemia České Budějovice 370 05 Czech Republic
School of Chemical and Bioprocess Engineering University College Dublin Belfield Dublin 4 Ireland
Zobrazit více v PubMed
Harada R.; Shigeta Y. Efficient Conformational Search Based on Structural Dissimilarity Sampling: Applications for Reproducing Structural Transitions of Proteins. J. Chem. Theory Comput. 2017, 13, 1411–1423. 10.1021/acs.jctc.6b01112. PubMed DOI
Miao Y.; Feher V. A.; McCammon J. A. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. J. Chem. Theory Comput. 2015, 11, 3584–3595. 10.1021/acs.jctc.5b00436. PubMed DOI PMC
Suenaga A.; Narumi T.; Futatsugi N.; Yanai R.; Ohno Y.; Okimoto N.; Taiji M. Folding Dynamics of 10-Residue β-Hairpin Peptide Chignolin. Chem.—Asian J. 2007, 2, 591–598. 10.1002/asia.200600385. PubMed DOI
Ghaani M. R.; English N. J. Non-Equilibrium Molecular-Dynamics Study of Electromagnetic-Field-Induced Propane-Hydrate Dissociation. J. Chem. Phys. 2018, 149, 12470210.1063/1.5029457. PubMed DOI
Lee J.; Shin S. Understanding β-Hairpin Formation by Molecular Dynamics Simulations of Unfolding. Biophys. J. 2001, 81, 2507–2516. 10.1016/S0006-3495(01)75896-1. PubMed DOI PMC
Zhang H.; Zhang N.; Fang F. Fabrication of High-Performance Nickel/Graphene Oxide Composite Coatings Using Ultrasonic-Assisted Electrodeposition. Ultrason. Sonochem. 2020, 62, 10485810.1016/j.ultsonch.2019.104858. PubMed DOI
de Pomerai D. I.; Smith B.; Dawe A.; North K.; Smith T.; Archer D. B.; Duce I. R.; Jones D.; Candido E. P. M. Microwave Radiation Can Alter Protein Conformation without Bulk Heating. FEBS Lett. 2003, 543, 93–97. 10.1016/S0014-5793(03)00413-7. PubMed DOI
English N. J.; Mooney D. A. Denaturation of Hen Egg White Lysozyme in Electromagnetic Fields: A Molecular Dynamics Study. J. Chem. Phys. 2007, 126, 09110510.1063/1.2515315. PubMed DOI
Bernardi M.; Ghaani M. R.; English N. J. Ionic Conductivity along Transmembrane-Electropores in Human Aquaporin 4: Calcium Effects from Non-Equilibrium Molecular Dynamics. Mol. Phys. 2019, 117, 3783–3790. 10.1080/00268976.2019.1665725. DOI
Bernardi M.; Marracino P.; Ghaani M. R.; Liberti M.; Del Signore F.; Burnham C. J.; Gárate J.-A.; Apollonio F.; English N. J. Human Aquaporin 4 Gating Dynamics under Axially Oriented Electric-Field Impulses: A Non-Equilibrium Molecular-Dynamics Study. J. Chem. Phys. 2018, 149, 24510210.1063/1.5044665. PubMed DOI
Astrakas L.; Gousias C.; Tzaphlidou M. Electric Field Effects on Chignolin Conformation. J. Appl. Phys. 2011, 109, 09470210.1063/1.3585867. DOI
Bohr H.; Bohr J. Microwave-Enhanced Folding and Denaturation of Globular Proteins. Phys. Rev. E 2000, 61, 4310–4314. 10.1103/PhysRevE.61.4310. PubMed DOI
Todorova N.; Bentvelzen A.; English N. J.; Yarovsky I. Electromagnetic-Field Effects on Structure and Dynamics of Amyloidogenic Peptides. J. Chem. Phys. 2016, 144, 08510110.1063/1.4941108. PubMed DOI
Hardell L.; Carlberg M.; Söderqvist F.; Hansson Mild K. Meta-Analysis of Long-Term Mobile Phone Use and the Association with Brain Tumours. Int. J. Oncol. 2008, 32, 1097–1103. 10.3892/ijo.32.5.1097. PubMed DOI
Goodman E. M.; Greenebaum B.; Marron M. T. Effects of Electromagnetic Fields on Molecules and Cells. Int. Rev. Cytol. 1995, 158, 279–338. 10.1016/s0074-7696(08)62489-4. PubMed DOI
Sheppard A. R.; Swicord M. L.; Balzano Q. Quantitative Evaluations of Mechanisms of Radiofrequency Interactions with Biological Molecules and Processes. Health Phys. 2008, 95, 365–396. 10.1097/01.HP.0000319903.20660.37. PubMed DOI
Honda S.; Yamasaki K.; Sawada Y.; Morii H. 10 Residue Folded Peptide Designed by Segment Statistics. Structure 2004, 12, 1507–1518. 10.1016/j.str.2004.05.022. PubMed DOI
Satoh D.; Shimizu K.; Nakamura S.; Terada T. Folding Free-Energy Landscape of a 10-Residue Mini-Protein, Chignolin. FEBS Lett. 2006, 580, 3422–3426. 10.1016/j.febslet.2006.05.015. PubMed DOI
Dinner A. R.; Lazaridis T.; Karplus M. Understanding β-Hairpin Formation. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9068–9073. 10.1073/pnas.96.16.9068. PubMed DOI PMC
Garcia A. E.; Sanbonmatsu K. Y. Exploring the Energy Landscape of a β Hairpin in Explicit Solvent. Proteins: Struct., Funct., Bioinf. 2001, 42, 345–354. 10.1002/1097-0134(20010215)42:3<345::AID-PROT50>3.0.CO;2-H. PubMed DOI
Pande V. S.; Rokhsar D. S. Molecular Dynamics Simulations of Unfolding and Refolding of a β-Hairpin Fragment of Protein G. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 9062–9067. 10.1073/pnas.96.16.9062. PubMed DOI PMC
Astrakas L. G.; Gousias C.; Tzaphlidou M. Structural Destabilization of Chignolin under the Influence of Oscillating Electric Fields. J. Appl. Phys. 2012, 111, 07470210.1063/1.3699389. DOI
Karplus M.; Petsko G. A. Molecular Dynamics Simulations in Biology. Nature 1990, 347, 631–639. 10.1038/347631a0. PubMed DOI
Budi A.; Legge F. S.; Treutlein H.; Yarovsky I. Comparative Study of Insulin Chain-B in Isolated and Monomeric Environments under External Stress. J. Phys. Chem. B 2008, 112, 7916–7924. 10.1021/jp800350v. PubMed DOI
Garate J.-A.; English N. J.; MacElroy J. M. D. Human Aquaporin 4 Gating Dynamics in Dc and Ac Electric Fields: A Molecular Dynamics Study. J. Chem. Phys. 2011, 134, 05511010.1063/1.3529428. PubMed DOI
Reale R.; English N. J.; Garate J. A.; Marracino P.; Liberti M.; Apollonio F. Human Aquaporin 4 Gating Dynamics under and after Nanosecond-Scale Static and Alternating Electric-Field Impulses: A Molecular Dynamics Study of Field Effects and Relaxation. J. Chem. Phys. 2013, 139, 20510110.1063/1.4832383. PubMed DOI
Budi A.; Legge F. S.; Treutlein H.; Yarovsky I. Effect of Frequency on Insulin Response to Electric Field Stress. J. Phys. Chem. B 2007, 111, 5748–5756. 10.1021/jp067248g. PubMed DOI
Toschi F.; Lugli F.; Biscarini F.; Zerbetto F. Effects of Electric Field Stress on a β-Amyloid Peptide. J. Phys. Chem. B 2009, 113, 369–376. 10.1021/jp807896g. PubMed DOI
Yamauchi M.; Okumura H. Development of Isothermal-Isobaric Replica-Permutation Method for Molecular Dynamics and Monte Carlo Simulations and Its Application to Reveal Temperature and Pressure Dependence of Folded, Misfolded, and Unfolded States of Chignolin. J. Chem. Phys. 2017, 147, 18410710.1063/1.4996431. PubMed DOI
Honda S.; Akiba T.; Kato Y. S.; Sawada Y.; Sekijima M.; Ishimura M.; Ooishi A.; Watanabe H.; Odahara T.; Harata K. Crystal Structure of a Ten-Amino Acid Protein. J. Am. Chem. Soc. 2008, 130, 15327–15331. 10.1021/ja8030533. PubMed DOI
Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. 10.1002/jcc.20291. PubMed DOI
Sorin E. J.; Pande V. S. Exploring the Helix-Coil Transition via All-Atom Equilibrium Ensemble Simulations. Biophys. J. 2005, 88, 2472–2493. 10.1529/biophysj.104.051938. PubMed DOI PMC
Abascal J. L. F.; Vega C. A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. J. Chem. Phys. 2005, 123, 23450510.1063/1.2121687. PubMed DOI
Florová P.; Sklenovský P.; Banáš P.; Otyepka M. Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact. J. Chem. Theory Comput. 2010, 6, 3569–3579. 10.1021/ct1003687. PubMed DOI
Benavides A. L.; Portillo M. A.; Chamorro V. C.; Espinosa J. R.; Abascal J. L. F.; Vega C. A Potential Model for Sodium Chloride Solutions Based on the TIP4P/2005 Water Model. J. Chem. Phys. 2017, 147, 10450110.1063/1.5001190. PubMed DOI
Aggarwal L.; Biswas P. Hydration Water Distribution around Intrinsically Disordered Proteins. J. Phys. Chem. B 2018, 122, 4206–4218. 10.1021/acs.jpcb.7b11091. PubMed DOI
Ghaani M. R.; Kuslaik P. G.; English N. J. Massive generation of metastable bulk nanobubbles in water by external electric fields. Sci. Adv. 2020, 6, aaz009410.1126/sciadv.aaz0094. PubMed DOI PMC
English N. J.; Carroll D. G. Prediction of Henry's law constants by a quantitative structure property relationship and neural networks. J. Chem. Info. Comput. Sci. 2001, 41, 1150–1161. 10.1021/ci010361d. PubMed DOI
Evans M. W.; Lie G. C.; Clementi E. Molecular Dynamics of Liquid Water in a Circularly Polarized External Field. J. Chem. Phys. 1987, 87, 6040–6045. 10.1063/1.453476. DOI
Mitsutake A.; Takano H. Relaxation Mode Analysis and Markov State Relaxation Mode Analysis for Chignolin in Aqueous Solution near a Transition Temperature. J. Chem. Phys. 2015, 143, 12411110.1063/1.4931813. PubMed DOI
Daura X.; Gademann K.; Jaun B.; Seebach D.; van Gunsteren W. F.; Mark A. E. Peptide Folding: When Simulation Meets Experiment. Angew. Chem., Int. Ed. 1999, 38, 236–240. 10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M. DOI
Harada R.; Kitao A. Exploring the Folding Free Energy Landscape of a β-Hairpin Miniprotein, Chignolin, Using Multiscale Free Energy Landscape Calculation Method. J. Phys. Chem. B 2011, 115, 8806–8812. 10.1021/jp2008623. PubMed DOI
Sumi T.; Koga K. Theoretical Analysis on Thermodynamic Stability of Chignolin. Sci. Rep. 2019, 9, 518610.1038/s41598-019-41518-1. PubMed DOI PMC
McKiernan K. A.; Husic B. E.; Pande V. S. Modeling the Mechanism of CLN025 Beta-Hairpin Formation. J. Chem. Phys. 2017, 147, 10410710.1063/1.4993207. PubMed DOI PMC
Xu W.; Lai T.; Yang Y.; Mu Y. Reversible Folding Simulation by Hybrid Hamiltonian Replica Exchange. J. Chem. Phys. 2008, 128, 17510510.1063/1.2911693. PubMed DOI
Li Y.-Q. Structure Changes of Soybean Protein Isolates by Pulsed Electric Fields. Phys. Procedia 2012, 33, 132–137. 10.1016/j.phpro.2012.05.040. DOI
Nandi P. K.; Burnham C. J.; English N. J. Electro-Suppression of Water Nano-Droplets’ Solidification in No Man’s Land: Electromagnetic Fields’ Entropic Trapping of Supercooled Water. J. Chem. Phys. 2018, 148, 04450310.1063/1.5004509. PubMed DOI
Reale R.; English N. J.; Garate J. A.; Marracino P.; Liberti M.; Apollonio F. Human Aquaporin 4 Gating Dynamics under and after Nanosecond-scale Static and Alternating Electric-Field Impulses: A Molecular Dynamics Study of Field Effects and Relaxation. J. Chem. Phys. 2013, 139, 20510110.1063/1.4832383. PubMed DOI
Garate J. A.; English N. J.; MacElroy J. M. D. Human Aquaporin 4 Gating Dynamics in dc and ac Electric Fields: A Molecular Dynamics study. J. Chem. Phys. 2011, 134, 05511010.1063/1.3529428. PubMed DOI
English N. J.; Solomentsev G. Y.; O’Brien P. Nonequilibrium Molecular Dynamics Study of Electric and Low-Frequency Microwave Fields on Hen Egg White Lysozyme. J. Chem. Phys. 2009, 131, 03510610.1063/1.3184794. PubMed DOI
Solomentsev G. Y.; English N. J.; Mooney D. A. Hydrogen Bond Perturbation in hen egg white lysozyme by external electromagnetic fields: a non-equilibrium molecular dynamics study. J. Chem. Phys. 2010, 133, 23510210.1063/1.3518975. PubMed DOI
Rodriguez A.; Mokoema P.; Corcho F.; Bisetty K.; Perez J. J. Computational Study of the Free Energy Landscape of the Miniprotein CLN025 in Explicit and Implicit Solvent. J. Phys. Chem. B 2011, 115, 1440–1449. 10.1021/jp106475c. PubMed DOI
Enemark S.; Kurniawan N. A.; Rajagopalan R. β-Hairpin Forms by Rolling up from C-Terminal: Topological Guidance of Early Folding Dynamics. Sci. Rep. 2012, 2, 64910.1038/srep00649. PubMed DOI PMC
Lovell S. C.; Davis I. W.; Arendall W. B.; De Bakker P. I. W.; Word J. M.; Prisant M. G.; Richardson J. S.; Richardson D. C. Structure Validation by Cα Geometry: φ,ψ and Cβ Deviation. Proteins: Struct., Funct., Genet. 2003, 50, 437–450. 10.1002/prot.10286. PubMed DOI
Terada T.; Satoh D.; Mikawa T.; Ito Y.; Shimizu K. Understanding the Roles of Amino Acid Residues in Tertiary Structure Formation of Chignolin by Using Molecular Dynamics Simulation. Proteins: Struct., Funct., Genet. 2008, 73, 621–631. 10.1002/prot.22100. PubMed DOI
Kührová P.; De Simone A.; Otyepka M.; Best R. B. Force-Field Dependence of Chignolin Folding and Misfolding: Comparison with Experiment and Redesign. Biophys. J. 2012, 102, 1897–1906. 10.1016/j.bpj.2012.03.024. PubMed DOI PMC
Hatfield M. P.; Murphy R. F.; Lovas S. Molecular Dynamics Analysis of the Conformations of a β-hairpin Miniprotein. J. Phys. Chem. B 2010, 114, 3028–3037. 10.1021/jp910465e. PubMed DOI PMC
Hatfield M. P.; Murphy R. F.; Lovas S. VCD Spectroscopic Properties of the β-hairpin Forming Miniprotein CLN025 in Various Solvents. Biopolymers 2010, 93, 442–450. 10.1002/bip.21356. PubMed DOI PMC
Maruyama Y.; Koroku S.; Imai M.; Takeuchi K.; Mitsutake A. Mutation-Induced Change in Chignolin Stability from π-turn to α-turn. RSC Adv. 2020, 10, 22797–22808. 10.1039/D0RA01148G. PubMed DOI PMC
English N. J.; MacElroy J. M. D. Atomistic simulations of liquid water using Lekner electrostatics. Mol. Phys. 2002, 100, 3753–3769. 10.1080/0026897021000028438. DOI
English N. J. Effect of electrostatics techniques on the estimation of thermal conductivity via equilibrium molecular dynamics simulation: application to methane hydrate. Molec. Phys. 2008, 106, 1887–1898. 10.1080/00268970802360348. DOI