Force-field dependence of chignolin folding and misfolding: comparison with experiment and redesign
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
22768946
PubMed Central
PMC3328722
DOI
10.1016/j.bpj.2012.03.024
PII: S0006-3495(12)00335-9
Knihovny.cz E-zdroje
- MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- oligopeptidy chemie MeSH
- sbalování proteinů * MeSH
- sekundární struktura proteinů MeSH
- simulace molekulární dynamiky * MeSH
- software MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- chignolin MeSH Prohlížeč
- oligopeptidy MeSH
We study the folding of the designed hairpin chignolin, using simulations with four different force fields. Interestingly, we find a misfolded, out-of-register, structure comprising 20-50% of the ordered structures with three force fields, but not with a fourth. A defining feature of the misfold is that Gly-7 adopts a β(PR) conformation rather than α(L). By reweighting, we show that differences between the force fields can mostly be attributed to differences in glycine properties. Benchmarking against NMR data suggests that the preference for β(PR) is not a force-field artifact. For chignolin, we show that including the misfold in the ensemble results in back-recalculated NMR observables in slightly better agreement with experiment than parameters calculated from a folded ensemble only. For comparison, we show by NMR and circular dichroism spectroscopy that the G7K mutant of chignolin, in which formation of this misfold is impossible, is well folded with stability similar to the wild-type and does not populate the misfolded state in simulation. Our results highlight the complexity of interpreting NMR data for small, weakly structured, peptides in solution, as well as the importance of accurate glycine parameters in force fields, for a correct description of turn structures.
Zobrazit více v PubMed
Kubelka J., Hofrichter J., Eaton W.A. The protein folding ‘speed limit’. Curr. Opin. Struct. Biol. 2004;14:76–88. PubMed
Freddolino P.L., Harrison C.B., Schulten K. Challenges in protein folding simulations: timescale, representation, and analysis. Nat. Phys. 2010;6:751–758. PubMed PMC
Bowman G.R., Voelz V.A., Pande V.S. Taming the complexity of protein folding. Curr. Opin. Struct. Biol. 2011;21:4–11. PubMed PMC
Thompson P.A., Muñoz V., Hofrichter J. The helix-coil kinetics of a heteropeptide. J. Phys. Chem. B. 2000;104:378–389.
Fierz B., Reiner A., Kiefhaber T. Local conformational dynamics in α-helices measured by fast triplet transfer. Proc. Natl. Acad. Sci. USA. 2009;106:1057–1062. PubMed PMC
Muñoz V., Thompson P.A., Eaton W.A. Folding dynamics and mechanism of β-hairpin formation. Nature. 1997;390:196–199. PubMed
Lapidus L.J., Eaton W.A., Hofrichter J. Measuring the rate of intramolecular contact formation in polypeptides. Proc. Natl. Acad. Sci. USA. 2000;97:7220–7225. PubMed PMC
Yeh I.-C., Hummer G. Peptide loop-closure kinetics from microsecond molecular dynamics simulations in explicit solvent. J. Am. Chem. Soc. 2002;124:6563–6568. PubMed
Blanco F.J., Rivas G., Serrano L. A short linear peptide that folds into a native stable β-hairpin in aqueous solution. Nat. Struct. Biol. 1994;1:584–590. PubMed
Cochran A.G., Skelton N.J., Starovasnik M.A. Tryptophan zippers: stable, monomeric β-hairpins. Proc. Natl. Acad. Sci. USA. 2001;98:5578–5583. PubMed PMC
Fesinmeyer R.M., Hudson F.M., Andersen N.H. Enhanced hairpin stability through loop design: the case of the protein G B1 domain hairpin. J. Am. Chem. Soc. 2004;126:7238–7243. PubMed
Espinosa J.F., Syud F.A., Gellman S.H. Analysis of the factors that stabilize a designed two-stranded antiparallel β-sheet. Protein Sci. 2002;11:1492–1505. PubMed PMC
Honda S., Yamasaki K., Morii H. 10-Residue folded peptide designed by segment statistics. Structure. 2004;12:1507–1518. PubMed
Honda S., Akiba T., Harata K. Crystal structure of a ten-amino acid protein. J. Am. Chem. Soc. 2008;130:15327–15331. PubMed
Graf J., Nguyen P.H., Schwalbe H. Structure and dynamics of the homologous series of alanine peptides: a joint molecular dynamics/NMR study. J. Am. Chem. Soc. 2007;129:1179–1189. PubMed
Francis C.J., Lindorff-Larsen K., Vendruscolo M. Characterization of the residual structure in the unfolded state of the Δ131Δ fragment of staphylococcal nuclease. Proteins. 2006;65:145–152. PubMed
Aliev A.E., Courtier-Murias D. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly. J. Phys. Chem. B. 2010;114:12358–12375. PubMed
Hess B., Kutzner C., Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008;4:435–447. PubMed
Sorin E.J., Pande V.S. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys. J. 2005;88:2472–2493. PubMed PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
Abascal J.L.F., Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005;123:234505. PubMed
Hornak V., Abel R., Simmerling C. Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins. 2006;65:712–725. PubMed PMC
Best R.B., Hummer G. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J. Phys. Chem. B. 2009;113:9004–9015. PubMed PMC
Best R.B., Mittal J. Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. J. Phys. Chem. B. 2010;114:14916–14923. PubMed
Mackerell A.D., Jr., Bashford D., Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins, FF1. J. Phys. Chem. B. 2000;102:3586–3616. PubMed
MacKerell A.D., Jr., Feig M., Brooks C.L., 3rd Improved treatment of the protein backbone in empirical force fields. J. Am. Chem. Soc. 2004;126:698–699. PubMed
MacKerell A.D., Jr., Feig M., Brooks C.L., 3rd Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004;25:1400–1415. PubMed
Peter C., Daura X., van Gunsteren W.F. Calculation of NMR-relaxation parameters for flexible molecules from molecular dynamics simulations. J. Biomol. NMR. 2001;20:297–310. PubMed
Feenstra K.A., Peter C., Mark A.E. A comparison of methods for calculating NMR cross-relaxation rates (NOESY and ROESY intensities) in small peptides. J. Biomol. NMR. 2002;23:181–194. PubMed
Vuister G.W., Bax A. Quantitative J correlation: a new approach for measuring three-bond J(HN-Hα) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 1993;115:7772–7777.
Kopple K.D., Wiley G.R., Tauke R. Dihedral angle-vicinal proton coupling-constant correlation for α-β bond of amino-acid residues. Biopolymers. 1973;12:627–636.
Shen Y., Bax A. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J. Biomol. NMR. 2010;48:13–22. PubMed PMC
Karplus M. Contact electron-spin coupling of nuclear magnetic moments. J. Chem. Phys. 1959;30:11–15.
Best R.B., Buchete N.-V., Hummer G. Are current molecular dynamics force fields too helical? Biophys. J. 2008;95:L07–L09. PubMed PMC
Duan Y., Wu C., Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003;24:1999–2012. PubMed
Best R.B., Mittal J. Balance between α and β structures in ab initio protein folding. J. Phys. Chem. B. 2010;114:8790–8798. PubMed
Mittal J., Best R.B. Tackling force-field bias in protein folding simulations: folding of Villin HP35 and Pin WW domains in explicit water. Biophys. J. 2010;99:L26–L28. PubMed PMC
Bonomi M., Branduardi D., Parrinello M. The unfolded ensemble and folding mechanism of the C-terminal GB1 β-hairpin. J. Am. Chem. Soc. 2008;130:13938–13944. PubMed
Florová P., Sklenovský P., Otyepka M. Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact. J. Chem. Theory Comput. 2010;6:3569–3579. PubMed
Harada R., Kitao A. Exploring the folding free energy landscape of a β-hairpin miniprotein, chignolin, using multiscale free energy landscape calculation method. J. Phys. Chem. B. 2011;115:8806–8812. PubMed
Rodriguez A., Mokoema P., Perez J.J. Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent. J. Phys. Chem. B. 2011;115:1440–1449. PubMed
Lindorff-Larsen K., Piana S., Shaw D.E. How fast-folding proteins fold. Science. 2011;334:517–520. PubMed
Piana S., Lindorff-Larsen K., Shaw D.E. How robust are protein folding simulations with respect to force field parameterization? Biophys. J. 2011;100:L47–L49. PubMed PMC
Best R.B., Mittal J. Microscopic events in β-hairpin folding from alternative unfolded ensembles. Proc. Natl. Acad. Sci. USA. 2011;108:11087–11092. PubMed PMC
Day R., Paschek D., Garcia A.E. Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage miniprotein. Proteins. 2010;78:1889–1899. PubMed PMC
Best R.B., Mittal J. Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: similarities and differences. Proteins. 2011;79:1318–1328. PubMed PMC
Torchia D.A. Dynamics of biomolecules from picoseconds to seconds at atomic resolution. J. Magn. Reson. 2011;212:1–10. PubMed
Evans M.R., Gardner K.H. Slow transition between two β-strand registers is dictated by protein unfolding. J. Am. Chem. Soc. 2009;131:11306–11307. PubMed PMC