Production of Methyl-Iodide in the Environment
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
35003036
PubMed Central
PMC8733467
DOI
10.3389/fmicb.2021.804081
Knihovny.cz E-resources
- Keywords
- biogenic methyl-iodide, biomethylation, iodide, iodine, volatilization,
- Publication type
- Journal Article MeSH
- Review MeSH
Iodine is an essential micronutrient for most of the living beings, including humans. Besides its indispensable role in animals, it also plays an important role in the environment. It undergoes several chemical and biological transformations resulting in the production of volatile methylated iodides, which play a key role in the iodine's global geochemical cycle. Since it can also mitigate the process of climate change, it is reasonable to study its biogeochemistry. Therefore, the aim of this review is to provide information on its origin, global fluxes and mechanisms of production in the environment.
See more in PubMed
Allard S., Gallard H., Fontaine C., Croué J.-P. (2010). Formation of methyl iodide on a natural manganese oxide. Water Res. 44 4623–4629. 10.1016/j.watres.2010.06.008 PubMed DOI
Amachi S., Kamagata Y., Kanagawa T., Muramatsu Y. (2001). Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl. Environ. Microbiol. 67 2718–2722. 10.1128/AEM.67.6.2718-2722.2001 PubMed DOI PMC
Amachi S., Kasahara M., Fujii T., Shinoyama H., Hanada S., Kamagata Y., et al. (2004). Radiotracer experiments on biological volatilization of organic iodine from coastal seawaters. Geomicrobiol. J. 21 481–488.
Atkinson H. M., Huang R. J., Chance R., Roscoe H. K., Hughes C., Davison B., et al. (2012). Iodine emissions from the sea ice of the Weddell Sea. Atmos. Chem. Phys. 12 11229–11244.
Attieh J. M., Hanson A. D., Saini H. S. (1995). Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J. Biol. Chem. 270 9250–9257. 10.1074/jbc.270.16.9250 PubMed DOI
Bagwell C. E., Zhong L., Wells J. R., Mitroshkov A. V., Qafoku N. P. (2019). Microbial methylation of iodide in unconfined aquifer sediments at the Hanford Site, USA. Front. Microbiol. 10:2460. 10.3389/fmicb.2019.02460 PubMed DOI PMC
Ban-Nai T., Muramatsu Y., Amachi S. (2006). Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures. Chemosphere 65 2216–2222. 10.1016/j.chemosphere.2006.05.047 PubMed DOI
Bell N., Hsu L., Jacob D. J., Schultz M. G., Blake D. R., Butler J. H., et al. (2002). Methyl iodide: atmospheric budget and use as a tracer of marine convection in global models. J. Geophys. Res. 107:4340.
Blake N. J., Blake D. R., Sive B. C., Chen T.-Y., Rowland F. S., Collins J. E., Jr., et al. (1996). Biomass burning emissions and vertical distribution of atmospheric methyl halides and other reduced carbon gases in the South Atlantic region. J. Geophys. Res. Atmos. 101 24151–24164. 10.1029/96jd00561 DOI
Brownell D. K., Moore R. M., Cullen J. J. (2010). Production of methyl halides by Prochlorococcus and Synechococcus. Glob. Biogeochem. Cycles 24:GB2002.
Butler E. C. V., Smith J. D., Fisher N. S. (1981). Influence of phytoplankton on iodine speciation in seawater. Limnol. Oceanogr. 26 382–386.
Carlessi M., Mariotti L., Giaume F., Fornara F., Perata P., Gonzali S. (2021). Targeted knockout of the gene OsHOL1 removes methyl iodide emissions from rice plants. Sci. Rep. 11:17010. 10.1038/s41598-021-95198-x PubMed DOI PMC
Carpenter L. J. (2003). Iodine in the marine boundary layer. Chem. Rev. 103 4953–4962. 10.1021/cr0206465 PubMed DOI
Carpenter L. J., Malin G., Liss P. S., Küpper F. C. (2000). Novel biogenic iodine-containing trihalomethanes and other short-lived halocarbons in the coastal east Atlantic. Glob. Biogeochem. Cycles 14 1191–1204. 10.1029/2000gb001257 DOI
Challenger F. (1951). “Biological methylation,” in Advances in Enzymology and Related Areas of Molecular Biology, ed. Purich D. (Hoboken, NJ: Wiley-Interscience; ), 429–491. PubMed
Chameides W. L., Davis D. D. (1980). Iodine: its possible role in tropospheric photochemistry. J. Geophys. Res. Oceans 85 7383–7398. 10.1029/jc085ic12p07383 DOI
Chen Y., Liu S., Yang G., He Z. (2020). Influence factors on photochemical production of methyl iodide in seawater. J. Ocean Univ. China 19 1353–1361. 10.1007/s11802-020-4463-8 DOI
Colin C., Leblanc C., Wagner E., Delage L., Leize-Wagner E., Van Dorsselaer A., et al. (2003). The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities*. J. Biol. Chem. 278 23545–23552. 10.1074/jbc.M300247200 PubMed DOI
Davis D., Crawford J., Liu S., Mckeen S., Bandy A., Thornton D., et al. (1996). Potential impact of iodine on tropospheric levels of ozone and other critical oxidants. J. Geophys. Res. Atmos. 101 2135–2147. 10.1029/95jd02727 DOI
Dimmer C. H., Simmonds P. G., Nickless G., Bassford M. R. (2001). Biogenic fluxes of halomethanes from Irish peatland ecosystems. Atmos. Environ. 35 321–330. 10.1016/s1352-2310(00)00151-5 DOI
Duborská E., Urík M., Bujdoš M. (2017). Comparison of iodide and iodate accumulation and volatilization by filamentous fungi during static cultivation. Water Air Soil Pollut. 228:225.
Duborská E., Urík M., Kubová J. (2018). Interaction with soil enhances the toxic effect of iodide and iodate on barley (Hordeum vulgare L.) compared to artificial culture media during initial growth stage. Arch. Agron. Soil Sci. 64 46–57. 10.1080/03650340.2017.1328104 DOI
Fujimori T., Yoneyama Y., Taniai G., Kurihara M., Tamegai H., Hashimoto S. (2012). Methyl halide production by cultures of marine proteobacteria erythrobacter and pseudomonas and isolated bacteria from brackish water. Limnol. Oceanogr. 57 154–162. 10.4319/lo.2012.57.1.0154 DOI
Fuse H., Inoue H., Murakami K., Takimura O., Yamaoka Y. (2003). Production of free and organic iodine by Roseovarius spp. FEMS Microbiol. Lett. 229 189–194. 10.1016/S0378-1097(03)00839-5 PubMed DOI
Gómez-Consarnau L., Klein N. J., Cutter L. S., Sañudo-Wilhelmy S. A. (2021). Growth rate-dependent synthesis of halomethanes in marine heterotrophic bacteria and its implications for the ozone layer recovery. Environ. Microbiol. Rep. 13 77–85. 10.1111/1758-2229.12905 PubMed DOI
Harper D. B. (1985). Halomethane from halide ion—a highly efficient fungal conversion of environmental significance. Nature 315 55–57.
Hu Z., Moore R. M. (1996). Kinetics of methyl halide production by reaction of DMSP with halide ion. Mar. Chem. 52 147–155. 10.1016/0304-4203(95)00077-1 DOI
Hughes C., Franklin D. J., Malin G. (2011). Iodomethane production by two important marine cyanobacteria: Prochlorococcus marinus (CCMP 2389) and Synechococcus sp. (CCMP 2370). Mar. Chem. 125 19–25. 10.1016/j.marchem.2011.01.007 DOI
Itoh N., Toda H., Matsuda M., Negishi T., Taniguchi T., Ohsawa N. (2009). Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus(daikon radish). BMC Plant Biol. 9:116. 10.1186/1471-2229-9-116 PubMed DOI PMC
Küpper F. C., Miller E. P., Andrews S. J., Hughes C., Carpenter L. J., Meyer-Klaucke W., et al. (2018). Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus. J. Biol. Inorgan. Chem. 23 1119–1128. 10.1007/s00775-018-1539-7 PubMed DOI
Landini M., Gonzali S., Kiferle C., Tonacchera M., Agretti P., Dimida A., et al. (2012). Metabolic engineering of the iodine content in Arabidopsis. Sci. Rep. 2:338. PubMed PMC
Laturnus F., Adams F. C., Wiencke C. (1998). Methyl halides from Antarctic macroalgae. Geophys. Res. Lett. 25 773–776. 10.1029/98gl00490 DOI
Leblanc C., Colin C., Cosse A., Delage L., La Barre S., Morin P., et al. (2006). Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88 1773–1785. 10.1016/j.biochi.2006.09.001 PubMed DOI
Manley S. L., Dastoor M. N. (1987). Methyl halide (CH3X) production from the giant kelp, Macrocystis, and estimates of global CH3X production by kelp1. Limnol. Oceanogr. 32 709–715. 10.4319/lo.1987.32.3.0709 DOI
Manley S. L., de la Cuesta J. L. (1997). Methyl iodide production from marine phytoplankton cultures. Limnol. Oceanogr. 42 142–147. 10.4319/lo.1997.42.1.0142 DOI
Manley S., Goodwin K., North W. (1992). Laboratory production of bromoform, methylene bromide, and methyl iodide by macroalgae and distribution in nearshore southern California waters. Limnol. Oceanogr. 37 1652–1659. 10.4319/lo.1992.37.8.1652 DOI
Moore R. M., Zafiriou O. C. (1994). Photochemical production of methyl iodide in seawater. J. Geophys. Res. 99 16415–16420. 10.1016/j.envpol.2021.116749 PubMed DOI
Muramatsu Y., Yoshida S. (1995). Volatilization of methyl iodide from the soil-plant system. Atmos. Environ. 29 21–25. 10.1016/1352-2310(94)00220-f DOI
Neidleman S. L., Geigert J. (1987). Biological halogenation: roles in nature, potential in industry. Endeavour 11 5–15. 10.1016/0160-9327(87)90163-3 PubMed DOI
Nightingale P. D., Malin G., Liss P. S. (1995). Production of chloroform and other low molecular-weight halocarbons by some species of macroalgae. Limnol. Oceanogr. 40 680–689. 10.4319/lo.1995.40.4.0680 DOI
Punitha T., Phang S. M., Juan J. C., Beardall J. (2018). Environmental control of vanadium haloperoxidases and halocarbon emissions in macroalgae. Mar. Biotechnol. (N. Y.) 20 282–303. 10.1007/s10126-018-9820-x PubMed DOI
Redeker K. R., Treseder K. K., Allen M. F. (2004). Ectomycorrhizal fungi: a new source of atmospheric methyl halides? Glob. Change Biol. 10 1009–1016. 10.1111/j.1529-8817.2003.00782.x DOI
Redeker K. R., Wang N., Low J. C., Mcmillan A., Tyler S. C., Cicerone R. J. (2000). Emissions of methyl halides and methane from rice paddies. Science 290 966–969. 10.1126/science.290.5493.966 PubMed DOI
Rhew R. C., Ostergaard L., Saltzman E. S., Yanofsky M. F. (2003). Genetic control of methyl halide production in Arabidopsis. Curr. Biol. 13 1809–1813. 10.1016/j.cub.2003.09.055 PubMed DOI
Saini H. S., Attieh J. M., Hanson A. D. (1995). Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction. Plant Cell Environ. 18 1027–1033. 10.1111/j.1365-3040.1995.tb00613.x DOI
Saiz-Lopez A., Plane J. M. C., Mcfiggans G., Williams P. I., Ball S. M., Bitter M., et al. (2006). Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation. Atmos. Chem. Phys. 6 883–895.
Saunders R. W., Saiz-Lopez A. (2009). “Iodine in the air: origin, transformation, and exchange to mammals,” in Comprehensive Handbook of Iodine, eds Preedy V. R., Burrow G. N., Watson R. (San Diego, CA: Academic Press; ), 73–82.
Smythe-Wright D., Boswell S. M., Breithaupt P., Davidson R. D., Dimmer C. H., Eiras Diaz L. B. (2006). Methyl iodide production in the ocean: implications for climate change. Glob. Biogeochem. Cycles 20:GB3003.
Solomon S., Garcia R. R., Ravishankara A. (1994). On the role of iodine in ozone depletion. J. Geophys. Res. Atmos. 99 20491–20499. 10.1029/94jd02028 DOI
Stemmler I., Hense I., Quack B., Maier-Reimer E. (2014). Methyl iodide production in the open ocean. Biogeosciences 11 4459–4476. 10.5194/bg-11-4459-2014 DOI
Taghipour F., Evans G. J. (2001). Radioiodine volatilization in the presence of organic compounds. Nuclear Technol. 134 208–220.
Thayer J. S. (2002). Biological methylation of less-studied elements. Appl. Organometal. Chem. 16 677–691. 10.1002/aoc.375 DOI
Urík M., Čerňanský S., Ševc J., Šimonovičová A., Littera P. (2007). Biovolatilization of arsenic by different fungal strains. Water Air Soil Pollut. 186 337–342. 10.1007/s11270-007-9489-7 DOI
Yuita K. (1992). Dynamics of iodine, bromine, and chlorine in soil .2. Chemical forms of iodine in soil solutions. Soil Sci. Plant Nutr. 38 281–287.
Microbial involvement in iodine cycle: mechanisms and potential applications