H1 helix of colicin U causes phospholipid membrane permeation
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35007517
DOI
10.1016/j.bbamem.2022.183866
PII: S0005-2736(22)00008-6
Knihovny.cz E-zdroje
- Klíčová slova
- Colicins, Leakage, Lipid membranes, Molecular dynamics, Permeation, Poration,
- MeSH
- fosfatidylcholiny chemie MeSH
- fosfatidylethanolaminy chemie MeSH
- fosfolipidy chemie MeSH
- koliciny chemie metabolismus farmakologie MeSH
- konformace proteinů, alfa-helix MeSH
- permeabilita účinky léků MeSH
- sekvence aminokyselin MeSH
- Shigella boydii metabolismus MeSH
- simulace molekulární dynamiky MeSH
- unilamelární lipozómy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylphosphatidylcholine MeSH Prohlížeč
- 1-palmitoyl-2-oleoylphosphatidylethanolamine MeSH Prohlížeč
- fosfatidylcholiny MeSH
- fosfatidylethanolaminy MeSH
- fosfolipidy MeSH
- koliciny MeSH
- unilamelární lipozómy MeSH
In light of an increasing number of antibiotic-resistant bacterial strains, it is essential to understand an action imposed by various antimicrobial agents on bacteria at the molecular level. One of the leading mechanisms of killing bacteria is related to the alteration of their plasmatic membrane. We study bio-inspired peptides originating from natural antimicrobial proteins colicins, which can disrupt membranes of bacterial cells. Namely, we focus on the α-helix H1 of colicin U, produced by bacterium Shigella boydii, and compare it with analogous peptides derived from two different colicins. To address the behavior of the peptides in biological membranes, we employ a combination of molecular simulations and experiments. We use molecular dynamics simulations to show that all three peptides are stable in model zwitterionic and negatively charged phospholipid membranes. At the molecular level, their embedment leads to the formation of membrane defects, membrane permeation for water, and, for negatively charged lipids, membrane poration. These effects are caused by the presence of polar moieties in the considered peptides. Importantly, simulations demonstrate that even monomeric H1 peptides can form toroidal pores. At the macroscopic level, we employ experimental co-sedimentation and fluorescence leakage assays. We show that the H1 peptide of colicin U incorporates into phospholipid vesicles and disrupts their membranes, causing leakage, in agreement with the molecular simulations. These insights obtained for model systems seem important for understanding the mechanisms of antimicrobial action of natural bacteriocins and for future exploration of small bio-inspired peptides able to disrupt bacterial membranes.
Citace poskytuje Crossref.org