BRG1 and NPM-ALK Are Co-Regulated in Anaplastic Large-Cell Lymphoma; BRG1 Is a Potential Therapeutic Target in ALCL
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17001
Cancer Research UK - United Kingdom
675712
Marie Curie - United Kingdom
C9685/A25117
Cancer Research UK - United Kingdom
PubMed
35008316
PubMed Central
PMC8750310
DOI
10.3390/cancers14010151
PII: cancers14010151
Knihovny.cz E-zdroje
- Klíčová slova
- ALCL, Brg1, NPM-ALK,
- Publikační typ
- časopisecké články MeSH
Anaplastic large-cell lymphoma (ALCL) is a T-cell malignancy driven in many cases by the product of a chromosomal translocation, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). NPM-ALK activates a plethora of pathways that drive the hallmarks of cancer, largely signalling pathways normally associated with cytokine and/or T-cell receptor-induced signalling. However, NPM-ALK is also located in the nucleus and its functions in this cellular compartment for the most part remain to be determined. We show that ALCL cell lines and primary patient tumours express the transcriptional activator BRG1 in a NPM-ALK-dependent manner. NPM-ALK regulates expression of BRG1 by post-translational mechanisms dependent on its kinase activity, protecting it from proteasomal degradation. Furthermore, we show that BRG1 drives a transcriptional programme associated with cell cycle progression. In turn, inhibition of BRG1 expression with specific shRNA decreases cell viability, suggesting that it may represent a key therapeutic target for the treatment of ALCL.
Central European Institute of Technology Masaryk University 601 77 Brno Czech Republic
Christian Doppler Laboratory of Applied Metabolomics Medical University Vienna 1090 Vienna Austria
Department of Laboratory Medicine and Pathology University of Alberta Edmonton AB T6G 2R3 Canada
Department of Life Sciences Birmingham City University Birmingham B15 3TN UK
Department of Paediatric Oncology Cambridge University Hospital NHS Trust Cambridge CB5 8PD UK
Department of Pathology Medical University Vienna 1090 Vienna Austria
The European Bioinformatics Institute Wellcome Genome Campus Cambridge CB10 1SA UK
The Gurdon Institute Cambridge CB2 1QN UK
Unit of Pathology of Laboratory Animals University of Veterinary Medicine Vienna 1210 Vienna Austria
Zobrazit více v PubMed
Kinney M.C., Higgins R.A., Medina E.A. Anaplastic large cell lymphoma: Twenty-five years of discovery. Arch. Pathol. Lab. Med. 2011;135:19–43. doi: 10.5858/2010-0507-RAR.1. PubMed DOI
Brugières L., Le Deley M.C., Rosolen A., Williams D., Horibe K., Wrobel G., Mann G., Zsiros J., Uyttebroeck A., Marky I., et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: Results of a randomized trial of the EICNHL Group. J. Clin. Oncol. 2009;27:897–903. doi: 10.1200/JCO.2008.18.1487. PubMed DOI
Le Deley M.C., Rosolen A., Williams D.M., Horibe K., Wrobel G., Attarbaschi A., Zsiros J., Uyttebroeck A., Marky I.M., Lamant L., et al. Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: Results of the randomized ALCL99-vinblastine trial. J. Clin. Oncol. 2010;28:3987–3993. doi: 10.1200/JCO.2010.28.5999. PubMed DOI
Savage K.J., Harris N.L., Vose J.M., Ullrich F., Jaffe E.S., Connors J.M., Rimsza L., Pileri S.A., Chhanabhai M., Gascoyne R.D., et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: Report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111:5496–5504. doi: 10.1182/blood-2008-01-134270. PubMed DOI
Bischof D., Pulford K., Mason D.Y., Morris S.W. Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol. Cell Biol. 1997;17:2312–2325. doi: 10.1128/MCB.17.4.2312. PubMed DOI PMC
Morris S.W., Kirstein M.N., Valentine M.B., Dittmer K.G., Shapiro D.N., Saltman D.L., Look A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–1284. doi: 10.1126/science.8122112. PubMed DOI
Turner S.D., Merz H., Yeung D., Alexander D.R. CD2 promoter regulated nucleophosmin-anaplastic lymphoma kinase in transgenic mice causes B lymphoid malignancy. Anticancer Res. 2006;26:3275–3279. PubMed
Turner S.D., Tooze R., Maclennan K., Alexander D.R. Vav-promoter regulated oncogenic fusion protein NPM-ALK in transgenic mice causes B-cell lymphomas with hyperactive Jun kinase. Oncogene. 2003;22:7750–7761. doi: 10.1038/sj.onc.1207048. PubMed DOI
Giuriato S., Foisseau M., Dejean E., Felsher D.W., Al Saati T., Demur C., Ragab A., Kruczynski A., Schiff C., Delsol G., et al. Conditional TPM3-ALK and NPM-ALK transgenic mice develop reversible ALK-positive early B-cell lymphoma/leukemia. Blood. 2010;115:4061–4070. doi: 10.1182/blood-2008-06-163386. PubMed DOI
Jäger R., Hahne J., Jacob A., Egert A., Schenkel J., Wernert N., Schorle H., Wellmann A. Mice transgenic for NPM-ALK develop non-Hodgkin lymphomas. Anticancer Res. 2005;25:3191–3196. PubMed
Chiarle R., Gong J.Z., Guasparri I., Pesci A., Cai J., Liu J., Simmons W.J., Dhall G., Howes J., Piva R., et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood. 2003;101:1919–1927. doi: 10.1182/blood-2002-05-1343. PubMed DOI
Ducray S.P., Natarajan K., Garland G.D., Turner S.D., Egger G. The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis. Cancers. 2019;11:1074. doi: 10.3390/cancers11081074. PubMed DOI PMC
Gambacorti-Passerini C., Messa C., Pogliani E.M. Crizotinib in anaplastic large-cell lymphoma. N. Engl. J. Med. 2011;364:775–776. doi: 10.1056/NEJMc1013224. PubMed DOI
Crockett D.K., Lin Z., Elenitoba-Johnson K.S., Lim M.S. Identification of NPM-ALK interacting proteins by tandem mass spectrometry. Oncogene. 2004;23:2617–2629. doi: 10.1038/sj.onc.1207398. PubMed DOI
Malcolm T.I., Villarese P., Fairbairn C.J., Lamant L., Trinquand A., Hook C.E., Burke G.A., Brugieres L., Hughes K., Payet D., et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat. Commun. 2016;7:10087. doi: 10.1038/ncomms10087. PubMed DOI PMC
Prokoph N., Probst N.A., Lee L.C., Monahan J.M., Matthews J.D., Liang H.C., Bahnsen K., Montes-Mojarro I.A., Karaca-Atabay E., Sharma G.G., et al. IL10RA Modulates Crizotinib Sensitivity in NPM1-ALK-positive Anaplastic Large Cell Lymphoma. Blood. 2020;136:1657–1669. doi: 10.1182/blood.2019003793. PubMed DOI PMC
Kim D., Langmead B., Salzberg S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC
Anders S., Pyl P.T., Huber W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Yates A.D., Achuthan P., Akanni W., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Azov A.G., Bennett R., et al. Ensembl 2020. Nucleic Acids Res. 2020;48:D682–D688. doi: 10.1093/nar/gkz966. PubMed DOI PMC
Piva R., Pellegrino E., Mattioli M., Agnelli L., Lombardi L., Boccalatte F., Costa G., Ruggeri B.A., Cheng M., Chiarle R., et al. Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J. Clin. Investig. 2006;116:3171–3182. doi: 10.1172/JCI29401. PubMed DOI PMC
Piva R., Chiarle R., Manazza A.D., Taulli R., Simmons W., Ambrogio C., D’Escamard V., Pellegrino E., Ponzetto C., Palestro G., et al. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood. 2006;107:689–697. doi: 10.1182/blood-2005-05-2125. PubMed DOI PMC
Cristofaro M.F.D., Betz B.L., Rorie C.J., Reisman D.N., Wang W., Weissman B.E. Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J. Cell. Physiol. 2001;186:136–145. doi: 10.1002/1097-4652(200101)186:1<136::AID-JCP1010>3.0.CO;2-4. PubMed DOI
Reisman D.N., Sciarrotta J., Wang W., Funkhouser W.K., Weissman B.E. Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: Correlation with poor prognosis. Cancer Res. 2003;63:560–566. PubMed
Laimer D., Dolznig H., Kollmann K., Vesely P.W., Schlederer M., Merkel O., Schiefer A.I., Hassler M.R., Heider S., Amenitsch L., et al. IPDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat. Med. 2012;18:1699–1704. doi: 10.1038/nm.2966. PubMed DOI
Fukuoka J., Fujii T., Shih J.H., Dracheva T., Meerzaman D., Player A., Hong K., Settnek S., Gupta A., Buetow K., et al. Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer. Clin. Cancer Res. 2004;10:4314–4324. doi: 10.1158/1078-0432.CCR-03-0489. PubMed DOI
Reisman D.N., Strobeck M.W., Betz B.L., Sciariotta J., Funkhouser W., Jr., Murchardt C., Yaniv M., Sherman L.S., Knudsen E.S., Weissman B.E. Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: Differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene. 2002;21:1196–1207. doi: 10.1038/sj.onc.1205188. PubMed DOI
Bultman S.J., Herschkowitz J.I., Godfrey V., Gebuhr T.C., Yaniv M., Perou C.M., Magnuson T. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene. 2008;27:460–468. doi: 10.1038/sj.onc.1210664. PubMed DOI
Bultman S., Gebuhr T., Yee D., La Mantia C., Nicholson J., Gilliam A., Randazzo F., Metzger D., Chambon P., Crabtree G., et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell. 2000;6:1287–1295. doi: 10.1016/S1097-2765(00)00127-1. PubMed DOI
Glaros S., Cirrincione G.M., Palanca A., Metzger D., Reisman D. Targeted knockout of BRG1 potentiates lung cancer development. Cancer Res. 2008;68:3689–3696. doi: 10.1158/0008-5472.CAN-07-6652. PubMed DOI
Reisman D.N., Sciarrotta J., Bouldin T.W., Weissman B.E., Funkhouser W.K. The expression of the SWI/SNF ATPase subunits BRG1 and BRM in normal human tissues. Appl. Immunohistochem. Mol. Morphol. 2005;13:66–74. doi: 10.1097/00129039-200503000-00011. PubMed DOI
Naidu S.R., Love I.M., Imbalzano A.N., Grossman S.R., Androphy E.J. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene. 2009;28:2492–2501. doi: 10.1038/onc.2009.121. PubMed DOI PMC
Tando T., Ishizaka A., Watanabe H., Ito T., Iida S., Haraguchi T., Mizutani T., Izumi T., Isobe T., Akiyama T., et al. Requiem protein links RelB/p52 and the Brm-type SWI/SNF complex in a noncanonical NF-kappaB pathway. J. Biol. Chem. 2010;285:21951–21960. doi: 10.1074/jbc.M109.087783. PubMed DOI PMC
Motegi A., Fujimoto J., Kotani M., Sakuraba H., Yamamoto T. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J. Cell Sci. 2004;117:3319–3329. doi: 10.1242/jcs.01183. PubMed DOI
Mazot P., Cazes A., Dingli F., Degoutin J., Irinopoulou T., Boutterin M.C., Lombard B., Loew D., Hallberg B., Palmer R.H., et al. Internalization and down-regulation of the ALK receptor in neuroblastoma cell lines upon monoclonal antibodies treatment. PLoS ONE. 2012;7:e33581. doi: 10.1371/journal.pone.0033581. PubMed DOI PMC
Wu C., Molavi O., Zhang H., Gupta N., Alshareef A., Bone K.M., Gopal K., Wu F., Lewis J.T., Douglas D.N., et al. STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK-positive anaplastic large-cell lymphoma. Blood. 2015;126:336–345. doi: 10.1182/blood-2014-10-603738. PubMed DOI
Bonvini P., Dalla Rosa H., Vignes N., Rosolen A. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: Role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res. 2004;64:3256–3264. doi: 10.1158/0008-5472.CAN-03-3531. PubMed DOI