The Effect of Deoxyfluorination on Intermolecular Interactions in the Crystal Structures of 1,6-Anhydro-2,3-epimino-hexopyranoses
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
35011510
PubMed Central
PMC8746508
DOI
10.3390/molecules27010278
PII: molecules27010278
Knihovny.cz E-resources
- Keywords
- X-ray crystallography, carbohydrates, deoxyfluorination, epimines, fluorine interactions, intermolecular interactions,
- Publication type
- Journal Article MeSH
The effect of substitution on intermolecular interactions was investigated in a series of 1,6-anhydro-2,3-epimino-hexopyranoses. The study focused on the qualitative evaluation of intermolecular interactions using DFT calculations and the comparison of molecular arrangements in the crystal lattice. Altogether, ten crystal structures were compared, including two structures of C4-deoxygenated, four C4-deoxyfluorinated and four parent epimino pyranoses. It was found that the substitution of the original hydroxy group by hydrogen or fluorine leads to a weakening of the intermolecular interaction by approximately 4 kcal/mol. The strength of the intermolecular interactions was found to be in the following descending order: hydrogen bonding of hydroxy groups, hydrogen bonding of the amino group, interactions with fluorine and weak electrostatic interactions. The intermolecular interactions that involved fluorine atom were rather weak; however, they were often supported by other weak interactions. The fluorine atom was not able to substitute the role of the hydroxy group in molecular packing and the fluorine atoms interacted only weakly with the hydrogen atoms located at electropositive regions of the carbohydrate molecules. However, the fluorine interaction was not restricted to a single molecule but was spread over at least three other molecules. This feature is a base for similar molecule arrangements in the structures of related compounds, as we found for the C4-Fax and C4-Feq epimines presented here.
See more in PubMed
Tamburrini A., Colombo C., Bernardi A. Design and synthesis of glycomimetics: Recent advances. Med. Res. Rev. 2020;40:495–531. doi: 10.1002/med.21625. PubMed DOI
Uhrig M.L., Lantaño B., Postigo A. Synthetic strategies for fluorination of carbohydrates. Org. Biomol. Chem. 2019;17:5173–5189. doi: 10.1039/C9OB00405J. PubMed DOI
Council C.E., Kilpin K.J., Gusthart J.S., Allman S.A., Linclau B., Lee S.S. Enzymatic glycosylation involving fluorinated carbohydrates. Org. Biomol. Chem. 2020;18:3423–3451. doi: 10.1039/D0OB00436G. PubMed DOI
Bilska-Markowska M., Szwajca A., Marciniak B. Design, properties and applications of fluorinated and fluoroalkylated N-containing monosaccharides and their analogues. J. Fluorine Chem. 2019;227:109364. doi: 10.1016/j.jfluchem.2019.109364. DOI
Böhm H.-J., Banner D., Bendels S., Kansy M., Kuhn B., Müller K., Obst-Sander U., Stahl M. Fluorine in Medicinal Chemistry. ChemBioChem. 2004;5:637–643. doi: 10.1002/cbic.200301023. PubMed DOI
O’Hagan D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008;37:308–319. doi: 10.1039/B711844A. PubMed DOI
Hagmann W.K. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008;51:4359–4369. doi: 10.1021/jm800219f. PubMed DOI
Linclau B., Arda A., Reichardt N.C., Sollogoub M., Unione L., Vincent S.P., Jimenez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem. Soc. Rev. 2020;49:3863–3888. doi: 10.1039/C9CS00099B. PubMed DOI
Diercks T., Ribeiro J.P., Cañada F.J., André S., Jiménez-Barbero J., Gabius H.-J. Fluorinated Carbohydrates as Lectin Ligands: Versatile Sensors in 19F-Detected Saturation Transfer Difference NMR Spectroscopy. Chem. Eur. J. 2009;15:5666–5668. doi: 10.1002/chem.200900168. PubMed DOI
Ribeiro J.P., Diercks T., Jiménez-Barbero J., André S., Gabius H.-J., Cañada F.J. Fluorinated Carbohydrates as Lectin Ligands: 19F-Based Direct STD Monitoring for Detection of Anomeric Selectivity. Biomolecules. 2015;5:3177–3192. doi: 10.3390/biom5043177. PubMed DOI PMC
Kurfiřt M., Dračínský M., Červenková Šťastná L., Cuřínová P., Hamala V., Hovorková M., Bojarová P., Karban J. Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19F NMR Probes to Study Carbohydrate-Galectin Interactions. Chem. Eur. J. 2021;27:13040–13051. doi: 10.1002/chem.202101752. PubMed DOI
O’Hagan D., Young R.J. Accurate Lipophilicity (log P) Measurements Inform on Subtle Stereoelectronic Effects in Fluorine Chemistry. Angew. Chem. Int. Ed. 2016;55:3858–3860. doi: 10.1002/anie.201511055. PubMed DOI
Denavit V., Lainé D., Bouzriba C., Shanina E., Gillon É., Fortin S., Rademacher C., Imberty A., Giguère D. Stereoselective Synthesis of Fluorinated Galactopyranosides as Potential Molecular Probes for Galactophilic Proteins: Assessment of Monofluorogalactoside–LecA Interactions. Chem. Eur. J. 2019;25:4478–4490. doi: 10.1002/chem.201806197. PubMed DOI
St-Gelais J., Cote E., Laine D., Johnson P.A., Giguere D. Addressing the Structural Complexity of Fluorinated Glucose Analogues: Insight into Lipophilicities and Solvation Effects. Chem. Eur. J. 2020;26:13499–13506. doi: 10.1002/chem.202002825. PubMed DOI
Baumann A., Marchner S., Daum M., Hoffmann-Röder A. Synthesis of Fluorinated Leishmania Cap Trisaccharides for Diagnostic Tool and Vaccine Development. Eur. J. Org. Chem. 2018;2018:3803–3815. doi: 10.1002/ejoc.201800384. DOI
Johannes M., Reindl M., Gerlitzki B., Schmitt E., Hoffmann-Röder A. Synthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4’-deoxy-4’-fluoro-Thomsen–Friedenreich epitope. Beilstein J. Org. Chem. 2015;11:155–161. doi: 10.3762/bjoc.11.15. PubMed DOI PMC
Selnick H.G., Hess J.F., Tang C., Liu K., Schachter J.B., Ballard J.E., Marcus J., Klein D.J., Wang X., Pearson M., et al. Discovery of MK-8719, a Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies. J. Med. Chem. 2019;62:10062–10097. doi: 10.1021/acs.jmedchem.9b01090. PubMed DOI
Lee H.-Y., Chen C.-Y., Tsai T.-I., Li S.-T., Lin K.-H., Cheng Y.-Y., Ren C.-T., Cheng T.-J.R., Wu C.-Y., Wong C.-H. Immunogenicity Study of Globo H Analogues with Modification at the Reducing or Nonreducing End of the Tumor Antigen. J. Am. Chem. Soc. 2014;136:16844–16853. doi: 10.1021/ja508040d. PubMed DOI
Oberbillig T., Mersch C., Wagner S., Hoffmann-Röder A. Antibody recognition of fluorinated MUC1 glycopeptide antigens. Chem. Commun. 2012;48:1487–1489. doi: 10.1039/C1CC15139H. PubMed DOI
Garnett J.A., Liu Y., Leon E., Allman S.A., Friedrich N., Saouros S., Curry S., Soldati-Favre D., Davis B.G., Feizi T., et al. Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma gondii. Protein Sci. 2009;18:1935–1947. doi: 10.1002/pro.204. PubMed DOI PMC
Mehta G., Sen S. Probing Fluorine Interactions in a Polyhydroxylated Environment: Conservation of a C–F···H–C Recognition Motif in Presence of O–H···O Hydrogen Bonds. Eur. J. Org. Chem. 2010;2010:3387–3394. doi: 10.1002/ejoc.201000226. DOI
Müller K. Simple Vector Considerations to Assess the Polarity of Partially Fluorinated Alkyl and Alkoxy Groups. CHIMIA Int. J. Chem. 2014;68:356–362. doi: 10.2533/chimia.2014.356. PubMed DOI
Yudin A.K. Aziridines and Epoxides in Organic Synthesis. John Wiley and Sons; Weinheim, Germany: 2006. pp. 1–492.
Sweeney J.B. Aziridines: Epoxides’ ugly cousins? Chem. Soc. Rev. 2002;31:247–258. doi: 10.1039/B006015L. PubMed DOI
Stanković S., D’Hooghe M., Catak S., Eum H., Waroquier M., Van Speybroeck V., De Kimpe N., Ha H.-J. Regioselectivity in the ring opening of non-activated aziridines. Chem. Soc. Rev. 2012;41:643–665. doi: 10.1039/C1CS15140A. PubMed DOI
Degennaro L., Trinchera P., Luisi R. Recent Advances in the Stereoselective Synthesis of Aziridines. Chem. Rev. 2014;114:7881–7929. doi: 10.1021/cr400553c. PubMed DOI
Botuha C., Chemla F., Ferreira F., Pérez-Luna A. Heterocycles in Natural Product Synthesis. John Wiley and Sons; Weinheim, Germany: 2011. Aziridines in Natural Product Synthesis; pp. 1–39.
Karban J., Kroutil J. Chemistry of carbohydrate aziridines. In: Horton D., editor. Advances in Carbohydrate Chemistry and Biochemistry. Volume 60. Elsevier Academic Press Inc.; San Diego, CA, USA: 2006. pp. 27–101. PubMed
Karban J., Kroutil J., Budesinsky M., Sykora J., Cisarova I. Ring-Opening Reactions of Aziridines Fused to a Conformationally Locked Tetrahydropyran Ring. Eur. J. Org. Chem. 2009;36:6399–6406. doi: 10.1002/ejoc.200900762. DOI
Karban J., Sýkora J., Kroutil J., Císařová I., Padělková Z., Buděšínský M. Synthesis of All Configurational Isomers of 1,6-Anhydro-2,3,4-trideoxy-2,3-epimino-4-fluoro-β-d-hexopyranoses. J. Org. Chem. 2010;75:3443–3446. doi: 10.1021/jo1000912. PubMed DOI
Karban J., Budesinsky M., Cerny M., Trnka T. Synthesis and NMR spectra of 1,6-anhydro-2,3-dideoxy-2,3-epimino- and 1,6-anhydro-3,4-dideoxy-3,4-epimino-β-d-hexopyranoses. Collect. Czech. Chem. Commun. 2001;66:799–819. doi: 10.1135/cccc20010799. DOI
Karban J., Budesinsky M., Kroutil J. Synthesis of 1,6-anhydro-2,3,4-trideoxy-2,3-epimino- and 1,6-anhydro-2,3,4-trideoxy-3,4-epimino-β-d-hexopyranoses and their NMR and infrared spectra. Collect. Czech. Chem. Commun. 2004;69:1939–1954. doi: 10.1135/cccc20041939. DOI
Kroutil J., Trnka T., Buděšínský M., Černý M. Preparation of 2,3-dideoxy-2,3-epimino and 3,4-dideoxy-3,4-epimino derivatives of 1,6-anhydro-β-d-hexopyranoses by Mitsunobu reaction. Collect. Czech. Chem. Commun. 1998;63:813–825. doi: 10.1135/cccc19980813. DOI
Cerny M., Elbert T., Pacak J. Syntheses with anhydro sugars. 21. Preparation of 1,6-anhydro-2,3-dideoxy-2,3-epimino-β-d-mannopyranose and its conversion to 2-amino-1,6-anhydro-2-deoxy-beta-mannopyranose. Collect. Czech. Chem. Commun. 1974;39:1752–1767. doi: 10.1135/cccc19741752. DOI
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2009. Revision A.02.
Becke A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Perdew J.P., Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Avogadro: An Open-Source Molecular Builder and Visualization Tool. Version 1.2.0. 2016. [(accessed on 30 August 2021)]. Available online: http://avogadro.cc/
Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Hobza P., Müller-Dethlefs K. Non-Covalent Interactions: Theory and Experiment. Royal Society of Chemistry; Cambridge, UK: 2010.
Stasyuk O.A., Sedlak R., Guerra C.F., Hobza P. Comparison of the DFT-SAPT and Canonical EDA Schemes for the Energy Decomposition of Various Types of Noncovalent Interactions. J. Chem. Theory Comput. 2018;14:3440–3450. doi: 10.1021/acs.jctc.8b00034. PubMed DOI
Sheldrick G.M. SHELXL-2017/1, Program for the Solution of Crystal Structures. University of Göttingen; Göttingen, Germany: 2017.
Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J.J. CRYSTALS version 12: Software for guided crystal structure analysis. Appl. Cryst. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Farrugia L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Cryst. 1997;30:565. doi: 10.1107/S0021889897003117. DOI
Discovery Studio Visualizer, Version 17.2.0.16349. BIOVIA, Dassault Systèmes; San Diego, CA, USA: 2016.
Moss G.P. Basic terminology of stereochemistry (IUPAC Recommendations 1996) Pure Appl. Chem. 1996;68:2193–2222. doi: 10.1351/pac199668122193. DOI