• This record comes from PubMed

The Effect of Deoxyfluorination on Intermolecular Interactions in the Crystal Structures of 1,6-Anhydro-2,3-epimino-hexopyranoses

. 2022 Jan 03 ; 27 (1) : . [epub] 20220103

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 35011510
PubMed Central PMC8746508
DOI 10.3390/molecules27010278
PII: molecules27010278
Knihovny.cz E-resources

The effect of substitution on intermolecular interactions was investigated in a series of 1,6-anhydro-2,3-epimino-hexopyranoses. The study focused on the qualitative evaluation of intermolecular interactions using DFT calculations and the comparison of molecular arrangements in the crystal lattice. Altogether, ten crystal structures were compared, including two structures of C4-deoxygenated, four C4-deoxyfluorinated and four parent epimino pyranoses. It was found that the substitution of the original hydroxy group by hydrogen or fluorine leads to a weakening of the intermolecular interaction by approximately 4 kcal/mol. The strength of the intermolecular interactions was found to be in the following descending order: hydrogen bonding of hydroxy groups, hydrogen bonding of the amino group, interactions with fluorine and weak electrostatic interactions. The intermolecular interactions that involved fluorine atom were rather weak; however, they were often supported by other weak interactions. The fluorine atom was not able to substitute the role of the hydroxy group in molecular packing and the fluorine atoms interacted only weakly with the hydrogen atoms located at electropositive regions of the carbohydrate molecules. However, the fluorine interaction was not restricted to a single molecule but was spread over at least three other molecules. This feature is a base for similar molecule arrangements in the structures of related compounds, as we found for the C4-Fax and C4-Feq epimines presented here.

See more in PubMed

Tamburrini A., Colombo C., Bernardi A. Design and synthesis of glycomimetics: Recent advances. Med. Res. Rev. 2020;40:495–531. doi: 10.1002/med.21625. PubMed DOI

Uhrig M.L., Lantaño B., Postigo A. Synthetic strategies for fluorination of carbohydrates. Org. Biomol. Chem. 2019;17:5173–5189. doi: 10.1039/C9OB00405J. PubMed DOI

Council C.E., Kilpin K.J., Gusthart J.S., Allman S.A., Linclau B., Lee S.S. Enzymatic glycosylation involving fluorinated carbohydrates. Org. Biomol. Chem. 2020;18:3423–3451. doi: 10.1039/D0OB00436G. PubMed DOI

Bilska-Markowska M., Szwajca A., Marciniak B. Design, properties and applications of fluorinated and fluoroalkylated N-containing monosaccharides and their analogues. J. Fluorine Chem. 2019;227:109364. doi: 10.1016/j.jfluchem.2019.109364. DOI

Böhm H.-J., Banner D., Bendels S., Kansy M., Kuhn B., Müller K., Obst-Sander U., Stahl M. Fluorine in Medicinal Chemistry. ChemBioChem. 2004;5:637–643. doi: 10.1002/cbic.200301023. PubMed DOI

O’Hagan D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008;37:308–319. doi: 10.1039/B711844A. PubMed DOI

Hagmann W.K. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008;51:4359–4369. doi: 10.1021/jm800219f. PubMed DOI

Linclau B., Arda A., Reichardt N.C., Sollogoub M., Unione L., Vincent S.P., Jimenez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem. Soc. Rev. 2020;49:3863–3888. doi: 10.1039/C9CS00099B. PubMed DOI

Diercks T., Ribeiro J.P., Cañada F.J., André S., Jiménez-Barbero J., Gabius H.-J. Fluorinated Carbohydrates as Lectin Ligands: Versatile Sensors in 19F-Detected Saturation Transfer Difference NMR Spectroscopy. Chem. Eur. J. 2009;15:5666–5668. doi: 10.1002/chem.200900168. PubMed DOI

Ribeiro J.P., Diercks T., Jiménez-Barbero J., André S., Gabius H.-J., Cañada F.J. Fluorinated Carbohydrates as Lectin Ligands: 19F-Based Direct STD Monitoring for Detection of Anomeric Selectivity. Biomolecules. 2015;5:3177–3192. doi: 10.3390/biom5043177. PubMed DOI PMC

Kurfiřt M., Dračínský M., Červenková Šťastná L., Cuřínová P., Hamala V., Hovorková M., Bojarová P., Karban J. Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19F NMR Probes to Study Carbohydrate-Galectin Interactions. Chem. Eur. J. 2021;27:13040–13051. doi: 10.1002/chem.202101752. PubMed DOI

O’Hagan D., Young R.J. Accurate Lipophilicity (log P) Measurements Inform on Subtle Stereoelectronic Effects in Fluorine Chemistry. Angew. Chem. Int. Ed. 2016;55:3858–3860. doi: 10.1002/anie.201511055. PubMed DOI

Denavit V., Lainé D., Bouzriba C., Shanina E., Gillon É., Fortin S., Rademacher C., Imberty A., Giguère D. Stereoselective Synthesis of Fluorinated Galactopyranosides as Potential Molecular Probes for Galactophilic Proteins: Assessment of Monofluorogalactoside–LecA Interactions. Chem. Eur. J. 2019;25:4478–4490. doi: 10.1002/chem.201806197. PubMed DOI

St-Gelais J., Cote E., Laine D., Johnson P.A., Giguere D. Addressing the Structural Complexity of Fluorinated Glucose Analogues: Insight into Lipophilicities and Solvation Effects. Chem. Eur. J. 2020;26:13499–13506. doi: 10.1002/chem.202002825. PubMed DOI

Baumann A., Marchner S., Daum M., Hoffmann-Röder A. Synthesis of Fluorinated Leishmania Cap Trisaccharides for Diagnostic Tool and Vaccine Development. Eur. J. Org. Chem. 2018;2018:3803–3815. doi: 10.1002/ejoc.201800384. DOI

Johannes M., Reindl M., Gerlitzki B., Schmitt E., Hoffmann-Röder A. Synthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4’-deoxy-4’-fluoro-Thomsen–Friedenreich epitope. Beilstein J. Org. Chem. 2015;11:155–161. doi: 10.3762/bjoc.11.15. PubMed DOI PMC

Selnick H.G., Hess J.F., Tang C., Liu K., Schachter J.B., Ballard J.E., Marcus J., Klein D.J., Wang X., Pearson M., et al. Discovery of MK-8719, a Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies. J. Med. Chem. 2019;62:10062–10097. doi: 10.1021/acs.jmedchem.9b01090. PubMed DOI

Lee H.-Y., Chen C.-Y., Tsai T.-I., Li S.-T., Lin K.-H., Cheng Y.-Y., Ren C.-T., Cheng T.-J.R., Wu C.-Y., Wong C.-H. Immunogenicity Study of Globo H Analogues with Modification at the Reducing or Nonreducing End of the Tumor Antigen. J. Am. Chem. Soc. 2014;136:16844–16853. doi: 10.1021/ja508040d. PubMed DOI

Oberbillig T., Mersch C., Wagner S., Hoffmann-Röder A. Antibody recognition of fluorinated MUC1 glycopeptide antigens. Chem. Commun. 2012;48:1487–1489. doi: 10.1039/C1CC15139H. PubMed DOI

Garnett J.A., Liu Y., Leon E., Allman S.A., Friedrich N., Saouros S., Curry S., Soldati-Favre D., Davis B.G., Feizi T., et al. Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma gondii. Protein Sci. 2009;18:1935–1947. doi: 10.1002/pro.204. PubMed DOI PMC

Mehta G., Sen S. Probing Fluorine Interactions in a Polyhydroxylated Environment: Conservation of a C–F···H–C Recognition Motif in Presence of O–H···O Hydrogen Bonds. Eur. J. Org. Chem. 2010;2010:3387–3394. doi: 10.1002/ejoc.201000226. DOI

Müller K. Simple Vector Considerations to Assess the Polarity of Partially Fluorinated Alkyl and Alkoxy Groups. CHIMIA Int. J. Chem. 2014;68:356–362. doi: 10.2533/chimia.2014.356. PubMed DOI

Yudin A.K. Aziridines and Epoxides in Organic Synthesis. John Wiley and Sons; Weinheim, Germany: 2006. pp. 1–492.

Sweeney J.B. Aziridines: Epoxides’ ugly cousins? Chem. Soc. Rev. 2002;31:247–258. doi: 10.1039/B006015L. PubMed DOI

Stanković S., D’Hooghe M., Catak S., Eum H., Waroquier M., Van Speybroeck V., De Kimpe N., Ha H.-J. Regioselectivity in the ring opening of non-activated aziridines. Chem. Soc. Rev. 2012;41:643–665. doi: 10.1039/C1CS15140A. PubMed DOI

Degennaro L., Trinchera P., Luisi R. Recent Advances in the Stereoselective Synthesis of Aziridines. Chem. Rev. 2014;114:7881–7929. doi: 10.1021/cr400553c. PubMed DOI

Botuha C., Chemla F., Ferreira F., Pérez-Luna A. Heterocycles in Natural Product Synthesis. John Wiley and Sons; Weinheim, Germany: 2011. Aziridines in Natural Product Synthesis; pp. 1–39.

Karban J., Kroutil J. Chemistry of carbohydrate aziridines. In: Horton D., editor. Advances in Carbohydrate Chemistry and Biochemistry. Volume 60. Elsevier Academic Press Inc.; San Diego, CA, USA: 2006. pp. 27–101. PubMed

Karban J., Kroutil J., Budesinsky M., Sykora J., Cisarova I. Ring-Opening Reactions of Aziridines Fused to a Conformationally Locked Tetrahydropyran Ring. Eur. J. Org. Chem. 2009;36:6399–6406. doi: 10.1002/ejoc.200900762. DOI

Karban J., Sýkora J., Kroutil J., Císařová I., Padělková Z., Buděšínský M. Synthesis of All Configurational Isomers of 1,6-Anhydro-2,3,4-trideoxy-2,3-epimino-4-fluoro-β-d-hexopyranoses. J. Org. Chem. 2010;75:3443–3446. doi: 10.1021/jo1000912. PubMed DOI

Karban J., Budesinsky M., Cerny M., Trnka T. Synthesis and NMR spectra of 1,6-anhydro-2,3-dideoxy-2,3-epimino- and 1,6-anhydro-3,4-dideoxy-3,4-epimino-β-d-hexopyranoses. Collect. Czech. Chem. Commun. 2001;66:799–819. doi: 10.1135/cccc20010799. DOI

Karban J., Budesinsky M., Kroutil J. Synthesis of 1,6-anhydro-2,3,4-trideoxy-2,3-epimino- and 1,6-anhydro-2,3,4-trideoxy-3,4-epimino-β-d-hexopyranoses and their NMR and infrared spectra. Collect. Czech. Chem. Commun. 2004;69:1939–1954. doi: 10.1135/cccc20041939. DOI

Kroutil J., Trnka T., Buděšínský M., Černý M. Preparation of 2,3-dideoxy-2,3-epimino and 3,4-dideoxy-3,4-epimino derivatives of 1,6-anhydro-β-d-hexopyranoses by Mitsunobu reaction. Collect. Czech. Chem. Commun. 1998;63:813–825. doi: 10.1135/cccc19980813. DOI

Cerny M., Elbert T., Pacak J. Syntheses with anhydro sugars. 21. Preparation of 1,6-anhydro-2,3-dideoxy-2,3-epimino-β-d-mannopyranose and its conversion to 2-amino-1,6-anhydro-2-deoxy-beta-mannopyranose. Collect. Czech. Chem. Commun. 1974;39:1752–1767. doi: 10.1135/cccc19741752. DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09. Gaussian, Inc.; Wallingford, CT, USA: 2009. Revision A.02.

Becke A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Perdew J.P., Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Avogadro: An Open-Source Molecular Builder and Visualization Tool. Version 1.2.0. 2016. [(accessed on 30 August 2021)]. Available online: http://avogadro.cc/

Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Hobza P., Müller-Dethlefs K. Non-Covalent Interactions: Theory and Experiment. Royal Society of Chemistry; Cambridge, UK: 2010.

Stasyuk O.A., Sedlak R., Guerra C.F., Hobza P. Comparison of the DFT-SAPT and Canonical EDA Schemes for the Energy Decomposition of Various Types of Noncovalent Interactions. J. Chem. Theory Comput. 2018;14:3440–3450. doi: 10.1021/acs.jctc.8b00034. PubMed DOI

Sheldrick G.M. SHELXL-2017/1, Program for the Solution of Crystal Structures. University of Göttingen; Göttingen, Germany: 2017.

Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J.J. CRYSTALS version 12: Software for guided crystal structure analysis. Appl. Cryst. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI

Farrugia L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Cryst. 1997;30:565. doi: 10.1107/S0021889897003117. DOI

Discovery Studio Visualizer, Version 17.2.0.16349. BIOVIA, Dassault Systèmes; San Diego, CA, USA: 2016.

Moss G.P. Basic terminology of stereochemistry (IUPAC Recommendations 1996) Pure Appl. Chem. 1996;68:2193–2222. doi: 10.1351/pac199668122193. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...