Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19 F NMR Probes to Study Carbohydrate-Galectin Interactions
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
LTC20052
Ministerstvo Školství, Mládeže a Tělovýchovy
LTC19038
Ministerstvo Školství, Mládeže a Tělovýchovy
20-01472S
Grantová Agentura České Republiky
Action CA18103 (INNOGLY)
European Cooperation in Science and Technology
COST Action CA17140
European Cooperation in Science and Technology
- Keywords
- ELISA, NMR spectroscopy, T2 filter, carbohydrates, galectins,
- MeSH
- Amino Sugars * MeSH
- Galectins * MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Carbohydrates MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amino Sugars * MeSH
- Galectins * MeSH
- N-acetyllactosamine MeSH Browser
- Carbohydrates MeSH
Galectins are widely expressed galactose-binding lectins implied, for example, in immune regulation, metastatic spreading, and pathogen recognition. N-Acetyllactosamine (Galβ1-4GlcNAc, LacNAc) and its oligomeric or glycosylated forms are natural ligands of galectins. To probe substrate specificity and binding mode of galectins, we synthesized a complete series of six mono-deoxyfluorinated analogues of LacNAc, in which each hydroxyl has been selectively replaced by fluorine while the anomeric position has been protected as methyl β-glycoside. Initial evaluation of their binding to human galectin-1 and -3 by ELISA and 19 F NMR T2 -filter revealed that deoxyfluorination at C3, C4' and C6' completely abolished binding to galectin-1 but very weak binding to galectin-3 was still detectable. Moreover, deoxyfluorination of C2' caused an approximately 8-fold increase in the binding affinity towards galectin-1, whereas binding to galectin-3 was essentially not affected. Lipophilicity measurement revealed that deoxyfluorination at the Gal moiety affects log P very differently compared to deoxyfluorination at the GlcNAc moiety.
See more in PubMed
R. D. Cummings, F. T. Liu, in Essentials of Glycobiology, 3rd edition. (Eds.: A. Varki, R. D. Cummings, J. D. Esko, et al.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), 2017, p. 469-480.
H. Leffler, S. Carlsson, M. Hedlund, Y. Qian, F. Poirier, Glycoconjugate J. 2002, 19, 433-440.
M. F. Brinchmann, D. M. Patel, M. H. Iversen, Mediators Inflammation 2018, 9186940;
N. L. Perillo, K. E. Pace, J. J. Seilhamer, L. G. Baum, Nature 1995, 378, 736-739.
R. P. M. Dings, M. C. Miller, R. J. Griffin, K. H. Mayo, Int. J. Mol. Sci. 2018, 19, 905.
F−T. Liu, G. A. Rabinovich, Nat. Rev. Cancer 2005, 5, 29-41.
L. Ingrassia, I. Camby, F. Lefranc, V. Mathieu, P. Nshimyumukiza, F. Darro, R. Kiss, Curr. Med. Chem. 2006, 13, 3513-3527;
R. J. Pieters, ChemBioChem 2006, 7, 721-728;
V. Denavit, D. Lainé, T. Tremblay, J. St-Gelais, D. Giguère, Trends Glycosci. Glycotechnol. 2018, 30, SE21-SE40;
C. T. Öberg, H. Leffler, U. J. Nilsson, Chimia 2011, 65, 18-23;
H. Leffler, U. J. Nilsson, ACS Symposium Series Vol. 1115, Galectins and Disease Implications for Targeted Therapeutics (Eds.: A. A. Klyosov, P. G. Traber), American Chemical Society, Washington, D. C., 2012, Chapter 2, p. 47 - 59;
K. H. Mayo, ACS Symposium Series Vol. 1115, Galectins and Disease Implications for Targeted Therapeutics (Eds.: A. A. Klyosov, P. G. Traber), American Chemical Society, Washington, D. C., 2012, Chapter 3, p. 61 - 77.
T. Delaine, P. Collins, A. MacKinnon, G. Sharma, J. Stegmayr, V. K. Rajput, S. Mandal, I. Cumpstey, A. Larumbe, B. A. Salameh, B. Kahl-Knutsson, H. van Hattum, M. van Scherpenzeel, R. J. Pieters, T. Sethi, H. Schambye, S. Oredsson, H. Leffler, H. Blanchard, U. J. Nilsson, ChemBioChem 2016, 17, 1759-1770.
B. Linclau, A. Ardá, N.-C. Reichardt, M. Sollogoub, L. Unione, S. P. Vincent, J. Jiménez-Barbero, Chem. Soc. Rev. 2020, 49, 3863-3888.
J. D. Martínez, P. Valverde, S. Delgado, C. Romanò, B. Linclau, N. C. Reichardt, S. Oscarson, A. Ardá, J. Jiménez-Barbero, F. J. Cañada, Molecules 2019, 24, 2337;
J. D. Martínez, A. I. Manzano, E. Calviño, A. d. Diego, B. Rodriguez de Francisco, C. Romanò, S. Oscarson, O. Millet, H.-J. Gabius, J. Jiménez-Barbero, F. J. Cañada, J. Org. Chem. 2020, 85, 16072-16081.
T. Diercks, J. P. Ribeiro, F. J. Cañada, S. André, J. Jiménez-Barbero, H.-J. Gabius, Chem. Eur. J. 2009, 15, 5666-5668.
T. Diercks, A. S. Infantino, L. Unione, J. Jiménez-Barbero, S. Oscarson, H.-J. Gabius, Chem. Eur. J. 2018, 24, 15761-15765.
A. Ardá, J. Jiménez-Barbero, Chem. Commun. 2018, 54, 4761-4769.
T.-J. Hsieh, H.-Y. Lin, Z. Tu, T.-C. Lin, S.-C. Wu, Y.-Y. Tseng, F.-T. Liu, S.-T. D. Hsu, C.-H. Lin, Sci. Rep. 2016, 6, 29457.
C. Romanò, S. Oscarson, Org. Biomol. Chem. 2019, 17, 2265-2278.
J. A. Garnett, Y. Liu, E. Leon, S. A. Allman, N. Friedrich, S. Saouros, S. Curry, D. Soldati-Favre, B. G. Davis, T. Feizi, S. Matthews, Protein Sci. 2009, 18, 1935-1947.
S.-J. Richards, T. Keenan, J.-B. Vendeville, D. E. Wheatley, H. Chidwick, D. Budhadev, C. E. Council, C. S. Webster, H. Ledru, A. N. Baker, M. Walker, M. C. Galan, B. Linclau, M. A. Fascione, M. I. Gibson, Chem. Sci. 2021, 12, 905-910.
M. Johannes, M. Reindl, B. Gerlitzki, E. Schmitt, A. Hoffmann-Röder, Beilstein J. Org. Chem. 2015, 11, 155-161;
A. Axer, R. P. Jumde, S. Adam, A. Faust, M. Schäfers, M. Fobker, J. Koehnke, A. K. H. Hirsch, R. Gilmour, Chem. Sci. 2021, 12, 1286-1294.
B. Linclau, Z. Wang, G. Compain, V. Paumelle, C. Q. Fontenelle, N. Wells, A. Weymouth-Wilson, Angew. Chem. Int. Ed. 2016, 55, 674-678;
Angew. Chem. 2016, 128, 684-688;
V. Denavit, D. Lainé, J. St-Gelais, P. A. Johnson, D. Giguère, Nat. Commun. 2018, 9, 4721;
J. St-Gelais, M. Bouchard, V. Denavit, D. Giguère, J. Org. Chem. 2019, 84, 8509-8522;
J. St-Gelais, É. Côté, D. Lainé, P. A. Johnson, D. Giguère, Chem. Eur. J. 2020, 26, 13499-13506.
D. Crich, V. Dudkin, J. Am. Chem. Soc. 2001, 123, 6819-6825.
S. Wagner, C. Mersch, A. Hoffmann-Röder, Chem. Eur. J. 2010, 16, 7319-7330.
G. Wasonga, Y. Tatara, I. Kakizaki, X. Huang, J. Carbohydr. Chem. 2013, 32, 392-409;
D. A. Williams, K. Pradhan, A. Paul, I. R. Olin, O. T. Tuck, K. D. Moulton, S. S. Kulkarni, D. H. Dube, Chem. Sci. 2020, 11, 1761-1774.
J. Alais, S. David, Carbohydr. Res. 1990, 201, 69-77.
J. Xia, J. Xue, R. D. Locke, E. V. Chandrasekaran, T. Srikrishnan, K. L. Matta, J. Org. Chem. 2006, 71, 3696-3706;
V. Denavit, D. Lainé, C. Bouzriba, E. Shanina, É. Gillon, S. Fortin, C. Rademacher, A. Imberty, D. Giguère, Chem. Eur. J. 2019, 25, 4478-4490.
A. Hoffmann-Röder, M. Johannes, Chem. Commun. 2011, 47, 9903-9905;
T. L. Lowary, O. Hindsgaul, Carbohydr. Res. 1993, 249, 163-195.
T. Holmstrøm, D. Raydan, C. M. Pedersen, Beilstein J. Org. Chem. 2020, 16, 2788-2794;
M. Černý, V. Gut, J. Pacák, Collect. Czech. Chem. Commun. 1961, 26, 2542-2550;
T. S. Rasmussen, H. H. Jensen, Org. Biomol. Chem. 2010, 8, 433-441.
S. A. Allman, H. H. Jensen, B. Vijayakrishnan, J. A. Garnett, E. Leon, Y. Liu, D. C. Anthony, N. R. Sibson, T. Feizi, S. Matthews, B. G. Davis, ChemBioChem 2009, 10, 2522-2529.
E. Durantie, C. Bucher, R. Gilmour, Chem. Eur. J. 2012, 18, 8208-8215.
M. Salvadó, B. Amgarten, S. Castillón, G. J. L. Bernardes, O. Boutureira, Org. Lett. 2015, 17, 2836-2839.
R. P. McGeary, K. Wright, I. Toth, J. Org. Chem. 2001, 66, 5102-5105.
C. J. Cavender, V. J. Shiner, J. Org. Chem. 1972, 37, 3567-3569.
D. A. Schwartz, H.-H. Lee, J. P. Carver, J. J. Krepinsky, Can. J. Chem. 1985, 63, 1073-1079.
Z. Wang, Comprehensive Organic Name Reactions and Reagents (Ed.: Z. Wang), 2010, p. 3123-3128.
R. Lattrell, G. Lohaus, Justus Liebigs Ann. Chem. 1974, 1974, 901-920;
H. Dong, Z. Pei, O. Ramström, J. Org. Chem. 2006, 71, 3306-3309.
K. Dax, M. Albert, J. Ortner, B. J. Paul, Carbohydr. Res. 2000, 327, 47-86.
J. Xie, A. Molina, S. Czernecki, J. Carbohydr. Chem. 1999, 18, 481-498;
A. K. Balcerzak, S. S. Ferreira, J. F. Trant, R. N. Ben, Bioorg. Med. Chem. Lett. 2012, 22, 1719-1721.
G. H. Veeneman, S. H. van Leeuwen, J. H. van Boom, Tetrahedron Lett. 1990, 31, 1331-1334.
C. W. Somawardhana, E. G. Brunngraber, Carbohydr. Res. 1983, 121, 51-60;
P. Valverde, J.-B. Vendeville, K. Hollingsworth, A. P. Mattey, T. Keenan, H. Chidwick, H. Ledru, K. Huonnic, K. Huang, M. E. Light, N. Turner, J. Jiménez-Barbero, M. C. Galan, M. A. Fascione, S. Flitsch, W. B. Turnbull, B. Linclau, Chem. Commun. 2020, 56, 6408-6411.
M.-C. Chapeau, P. A. Frey, J. Org. Chem. 1994, 59, 6994-6998.
C. Q. Fontenelle, D. Shishmarev, P. W. Kuchel, B. Linclau, Trends Carbohydr. Res. 2017, 9, 29-34.
J. St-Gelais, V. Denavit, D. Giguère, Org. Biomol. Chem. 2020, 18, 3903-3907.
A. Fürst, P. A. Plattner, Helv. Chim. Acta 1949, 32, 275-283.
L. K. Mydock, A. V. Demchenko, Org. Biomol. Chem. 2010, 8, 497-510.
H. M. Christensen, S. Oscarson, H. H. Jensen, Carbohydr. Res. 2015, 408, 51-95.
A. Rencurosi, L. Lay, G. Russo, E. Caneva, L. Poletti, J. Org. Chem. 2005, 70, 7765-7768.
J. D. C. Codée, R. E. J. N. Litjens, R. den Heeten, H. S. Overkleeft, J. H. van Boom, G. A. van der Marel, Org. Lett. 2003, 5, 1519-1522.
N. Shangguan, S. Katukojvala, R. Greenberg, L. J. Williams, J. Am. Chem. Soc. 2003, 125, 7754-7755.
J. Rönnols, O. Engström, U. Schnupf, E. Säwén, J. W. Brady, G. Widmalm, ChemBioChem 2019, 20, 2519-2528.
D. Chen, M. Zhao, W. Tan, Y. Li, X. Li, Y. Li, X. Fan, Eur. J. Pharm. Sci. 2019, 130, 100-106.
J. Landsröm, M. Bergström, C. Hamark, S. Ohlson, G. Wildman, Org. Biomol. Chem. 2012, 10, 3019-3032.
C. Dalvit, A. Vulpetti, J. Med. Chem. 2019, 62, 2218-2244.
S. Meiboom, D. Gill, Rev. Sci. Instrum. 1958, 29, 688-691.
C. Dalvit, A. Parent, F. Vallée, M. Mathieu, A. Rak, ChemMedChem 2019, 14, 1115-1127.
Y. Kajihara, T. Endo, H. Ogasawara, H. Kodama, H. Hashimoto, Carbohydr. Res. 1995, 269, 273-294.
E. Petrakova, U. Spohr, R. U. Lemieux, Can. J. Chem. 1992, 70, 233-240.
C. J. Moore, F.-I. Auzanneau, Beilstein J. Org. Chem. 2012, 8, 1134-1143.
M. Tredwell, V. Gouverneur, in Comprehensive Chirality (Eds.: E. M. Carreira, H. Yamamoto), Elsevier, Amsterdam, 2012, p. 70 - 85.
D. SOLÍS, J. JIMÉNEZ-BARBERO, M. MARTÍN-LOMAS, T. DÍAZ-MAURIÑO, Eur. J. Biochem. 1994, 223, 107-114;
D. Solís, A. Romero, H. Kaltner, H.-J. Gabius, T. Díaz-Mauriño, J. Biol. Chem. 1996, 271, 12744-12748;
A. Tatami, Y.-S. Hon, I. Matsuo, M. Takatani, H. Koshino, Y. Ito, Biochem. Biophys. Res. Commun. 2007, 364, 332-337;
P. S. Vermersch, J. J. G. Tesmer, F. A. Quiocho, J. Mol. Biol. 1992, 226, 923-929;
J. P. van Wauwe, F. G. Loontiens, C. K. de Bruyne, Biochim. Biophys. Acta Protein Struct. 1975, 379, 456-461;
L. Bhattacharyya, C. F. Brewer, Eur. J. Biochem. 1988, 176, 207-212.
Y.-C. Chan, H.-Y. Lin, Z. Tu, Y.-H. Kuo, S.-T. D. Hsu, C.-H. Lin, Int. J. Mol. Sci. 2018, 19, 392.
K. E. Kövér, E. Wéber, T. A. Martinek, É. Monostori, G. Batta, ChemBioChem 2010, 11, 2182-2187.
K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886;
J. Pollock, D. Borkin, G. Lund, T. Purohit, E. Dyguda-Kazimierowicz, J. Grembecka, T. Cierpicki, J. Med. Chem. 2015, 58, 7465-7474;
W. K. Hagmann, J. Med. Chem. 2008, 51, 4359-4369.
F. R. Zetterberg, K. Peterson, R. E. Johnsson, T. Brimert, M. Håkansson, D. T. Logan, H. Leffler, U. J. Nilsson, ChemMedChem 2018, 13, 133-137;
K. Peterson, R. Kumar, O. Stenström, P. Verma, P. R. Verma, M. Håkansson, B. Kahl-Knutsson, F. Zetterberg, H. Leffler, M. Akke, D. T. Logan, U. J. Nilsson, J. Med. Chem. 2018, 61, 1164-1175.
I. N′Go, S. Golten, A. Ardá, J. Cañada, J. Jiménez-Barbero, B. Linclau, S. P. Vincent, Chem. Eur. J. 2014, 20, 106-112.
M. F. López-Lucendo, D. Solís, S. André, J. Hirabayashi, K.-i. Kasai, H. Kaltner, H.-J. Gabius, A. Romero, J. Mol. Biol. 2004, 343, 957-970;
J. Su, T. Zhang, P. Wang, F. Liu, G. Tai, Y. Zhou, Acta Biochim. Biophys. Sin. 2015, 47, 192-198.
S. Bertuzzi, A. Gimeno, R. Núñez-Franco, G. Bernardo-Seisdedos, S. Delgado, G. Jiménez-Osés, O. Millet, J. Jiménez-Barbero, A. Ardá, Chem. Eur. J. 2020, 26, 15643-15653.
L. Shimoni, J. P. Glusker, C. W. Bock, J. Phys. Chem. 1995, 99, 1194-1198.
S. Buchini, F.-X. Gallat, I. R. Greig, J.-H. Kim, S. Wakatsuki, L. M. G. Chavas, S. G. Withers, Angew. Chem. Int. Ed. 2014, 53, 3382-3386;
Angew. Chem. 2014, 126, 3450-3454.
Influence of Selective Deoxyfluorination on the Molecular Structure of Type-2 N-Acetyllactosamine