Determination of Intraprostatic and Intratesticular Androgens

. 2021 Jan 05 ; 22 (1) : . [epub] 20210105

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33466491

Grantová podpora
MH CZ - DRO [Institute of Endocrinology, 00023761] Ministerstvo Zdravotnictví Ceské Republiky
A2_FPBT_2020_017 Specifický vysokoškolský výzkum

Androgens represent the main hormones responsible for maintaining hormonal balance and function in the prostate and testis. As they are involved in prostate and testicular carcinogenesis, more detailed information of their active concentration at the site of action is required. Since the introduction of the term intracrinology as the local formation of active steroid hormones from inactive precursors of the adrenal gland, mainly dehydroepiandrosterone (DHEA) and DHEA-S, it is evident that blood circulating levels of sex steroid hormones need not reflect their actual concentrations in the tissue. Here, we review and critically evaluate available methods for the analysis of human intraprostatic and intratesticular steroid concentrations. Since analytical approaches have much in common in both tissues, we discuss them together. Preanalytical steps, including various techniques for separation of the analytes, are compared, followed by the end-point measurement. Advantages and disadvantages of chromatography-mass spectrometry (LC-MS, GC-MS), immunoanalytical methods (IA), and hybrid (LC-IA) are discussed. Finally, the clinical information value of the determined steroid hormones is evaluated concerning differentiating between patients with cancer or benign hyperplasia and between patients with different degrees of infertility. Adrenal-derived 11-oxygenated androgens are mentioned as perspective prognostic markers for these purposes.

Zobrazit více v PubMed

Elbers J.M., Grootenhuis A.J. New tissue-selective androgens: Perspectives in the treatment of androgen deficits. Ann. Endocrinol. 2003;64:183–188. PubMed

Labrie F. Intracrinology. Mol. Cell Endocrinol. 1991;78:C113–C118. doi: 10.1016/0303-7207(91)90116-A. PubMed DOI

Fluck C.E., Pandey A.V. Steroidogenesis of the testis—New genes and pathways. Ann. Endocrinol. 2014;75:40–47. doi: 10.1016/j.ando.2014.03.002. PubMed DOI

Steers W.D. 5alpha-reductase activity in the prostate. Urology. 2001;58(Suppl. 1):17–24. doi: 10.1016/S0090-4295(01)01299-7. discussion 24. PubMed DOI

Schiffer L., Barnard L., Baranowski E.S., Gilligan L.C., Taylor A.E., Arlt W., Shackleton C.H.L., Storbeck K.-H. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J. Steroid Biochem. Mol. Biol. 2019;194:105439. doi: 10.1016/j.jsbmb.2019.105439. PubMed DOI PMC

Siiteri P.K., Wilson J.D. Dihydrotestosterone in prostatic hypertrophy. I. The formation and content of dihydrotestosterone in the hypertrophic prostate of man. J. Clin. Investig. 1970;49:1737–1745. doi: 10.1172/JCI106391. PubMed DOI PMC

Kjoseland O., Tveter K.J., Attramadal A., Hansson V., Haugen H.N., Mathisen W. Metabolism of testosterone in the human prostate and seminal vesicles. Scand. J. Urol. Nephrol. 1977;11:1–6. doi: 10.3109/00365597709179684. PubMed DOI

McMahon M.J., Thomas G.H. The metabolism of testosterone by human prostate in organ culture. J. Endocrinol. 1970;48:xx–xxi. PubMed

Adeniji A.O., Chen M., Penning T.M. AKR1C3 as a target in castrate resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 2013;137:136–149. doi: 10.1016/j.jsbmb.2013.05.012. PubMed DOI PMC

Bloem L.M., Storbeck K.H., Schloms L., Swart A.C. 11β-hydroxyandrostenedione returns to the steroid arena: Biosynthesis, metabolism and function. Molecules. 2013;18:13228–13244. doi: 10.3390/molecules181113228. PubMed DOI PMC

Du Toit T., Swart A.C. The 11β-hydroxyandrostenedione pathway and C11-oxy C21 backdoor pathway are active in benign prostatic hyperplasia yielding 11keto-testosterone and 11keto-progesterone. J. Steroid Biochem. Mol. Biol. 2020;196:105497. doi: 10.1016/j.jsbmb.2019.105497. PubMed DOI

Turcu A.F., Auchus R.J. Clinical significance of 11-oxygenated androgens. Curr. Opin. Endocrinol. Diabetes Obes. 2017;24:252–259. doi: 10.1097/MED.0000000000000334. PubMed DOI PMC

Turcu A.F., Nanba A.T., Auchus R.J. The Rise, Fall, and Resurrection of 11-Oxygenated Androgens in Human Physiology and Disease. Hormone Res. Paediatr. 2018;89:284–291. doi: 10.1159/000486036. PubMed DOI PMC

Pretorius E., Africander D.J., Vlok M., Perkins M.S., Quanson J., Storbeck K.H. 11-Ketotestosterone and 11-Ketodihydrotestosterone in Castration Resistant Prostate Cancer: Potent Androgens Which Can No Longer Be Ignored. PLoS ONE. 2016;11:e0159867. doi: 10.1371/journal.pone.0159867. PubMed DOI PMC

Mostaghel E.A., Cho E., Zhang A., Alyamani M., Kaipainen A., Green S., Marck B.T., Sharifi N., Wright J.L., Gulati R., et al. Association of Tissue Abiraterone Levels and SLCO Genotype with Intraprostatic Steroids and Pathologic Response in Men with High-Risk Localized Prostate Cancer. Clin. Cancer Res. 2017;23:4592–4601. doi: 10.1158/1078-0432.CCR-16-2245. PubMed DOI PMC

Kinoshita Y., Hosaka M., Nishimura R., Takai S. Partial characterization of 5 alpha-reductase in the human epididymis. Endocrinol. Jpn. 1980;27:277–284. doi: 10.1507/endocrj1954.27.277. PubMed DOI

Schiffer L., Arlt W., Storbeck K.H. Intracrine androgen biosynthesis, metabolism and action revisited. Mol. Cell Endocrinol. 2018;465:4–26. doi: 10.1016/j.mce.2017.08.016. PubMed DOI PMC

Di Donato M., Cernera G., Giovannelli P., Galasso G., Bilancio A., Migliaccio A., Castoria G. Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol. Cell. Endocrinol. 2017;457:35–42. doi: 10.1016/j.mce.2017.02.045. PubMed DOI

Prins G.S. Endocrine disruptors and prostate cancer risk. Endocr. Relat. Cancer. 2008;15:649–656. doi: 10.1677/ERC-08-0043. PubMed DOI PMC

Cook M.B., Stanczyk F.Z., Wood S.N., Pfeiffer R.M., Hafi M., Veneroso C.C., Lynch B., Falk R.T., Zhou C.K., Niwa S., et al. Relationships between Circulating and Intraprostatic Sex Steroid Hormone Concentrations. Cancer Epidemiol. Biomark. Prev. 2017;26:1660–1666. doi: 10.1158/1055-9965.EPI-17-0215. PubMed DOI PMC

Penning T.M., Detlefsen A.J. Intracrinology-revisited and prostate cancer. J. Steroid Biochem. Mol. Biol. 2020;196:12. doi: 10.1016/j.jsbmb.2019.105499. PubMed DOI PMC

Tremblay J.J. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids. 2015;103:3–10. doi: 10.1016/j.steroids.2015.08.001. PubMed DOI

Santiemma V., Rosati P., Guerzoni C., Mariani S., Beligotti F., Magnanti M., Garufi G., Galoni T., Fabbrini A. Human Sertoli cells in vitro: Morphological features and androgen-binding protein secretion. J. Steroid Biochem. Mol. Biol. 1992;43:423–429. doi: 10.1016/0960-0760(92)90080-3. PubMed DOI

Jarow J.P., Wright W.W., Brown T.R., Yan X., Zirkin B.R. Bioactivity of Androgens Within the Testes and Serum of Normal Men. J. Androl. 2005;26:343–348. doi: 10.2164/jandrol.04100. PubMed DOI

O’Hara L., Smith L.B. Androgen receptor roles in spermatogenesis and infertility. Best Pract. Res. Clin. Endocrinol. Metab. 2015;29:595–605. doi: 10.1016/j.beem.2015.04.006. PubMed DOI

Page S.T., Lin D.W., Mostaghel E.A., Marck B.T., Wright J.L., Wu J., Amory J.K., Nelson P.S., Matsumoto A.M. Dihydrotestosterone administration does not increase intraprostatic androgen concentrations or alter prostate androgen action in healthy men: A randomized-controlled trial. J. Clin. Endocrinol. Metab. 2011;96:430–437. doi: 10.1210/jc.2010-1865. PubMed DOI PMC

Roy A.B. The steroid 5 -reductase activity of rat liver and prostate. Biochimie. 1971;53:1031–1040. doi: 10.1016/S0300-9084(71)80071-8. PubMed DOI

Jarow J.P., Chen H., Rosner T.W., Trentacoste S., Zirkin B.R. Assessment of the androgen environment within the human testis: Minimally invasive method to obtain intratesticular fluid. J. Androl. 2001;22:640–645. PubMed

Lévesque É., Laverdière I., Lacombe L., Caron P., Rouleau M., Turcotte V., Têtu B., Fradet Y., Guillemette C. Importance of 5α-Reductase Gene Polymorphisms on Circulating and Intraprostatic Androgens in Prostate Cancer. Clin. Cancer Res. 2014;20:576–584. doi: 10.1158/1078-0432.CCR-13-1100. PubMed DOI

Vlčková H., Pilařová V., Novák O., Solich P., Nováková L. Micro-SPE in pipette tips as a tool for analysis of small-molecule drugs in serum. Bioanalysis. 2017;9:887–901. doi: 10.4155/bio-2017-0033. PubMed DOI

Nishiyama T., Ikarashi T., Hashimoto Y., Suzuki K., Takahashi K. Association between the dihydrotestosterone level in the prostate and prostate cancer aggressiveness using the Gleason score. J. Urol. 2006;176((4 Pt 1)):1387–1391. doi: 10.1016/j.juro.2006.06.066. PubMed DOI

Mostaghel E.A., Nelson P.S., Lange P., Lin D.W., Taplin M.E., Balk S., Ellis W., Kantoff P., Marck B., Tamae D., et al. Targeted androgen pathway suppression in localized prostate cancer: A pilot study. J. Clin. Oncol. 2014;32:229–237. doi: 10.1200/JCO.2012.48.6431. PubMed DOI PMC

Heracek J., Hampl R., Hill M., Starka L., Sachova J., Kuncova J., Eis V., Urban M., Mandys V. Tissue and serum levels of principal androgens in benign prostatic hyperplasia and prostate cancer. Steroids. 2007;72:375–380. doi: 10.1016/j.steroids.2007.01.004. PubMed DOI

Miyoshi Y., Uemura H., Umemoto S., Sakamaki K., Morita S., Suzuki K., Shibata Y., Masumori N., Ichikawa T., Mizokami A., et al. High testosterone levels in prostate tissue obtained by needle biopsy correlate with poor-prognosis factors in prostate cancer patients. BMC Cancer. 2014;14:1471–2407. doi: 10.1186/1471-2407-14-717. PubMed DOI PMC

Thirumalai A., Cooper L.A., Rubinow K.B., Amory J.K., Lin D.W., Wright J.L., Marck B.T., Matsumoto A.M., Page S.T. Stable Intraprostatic Dihydrotestosterone in Healthy Medically Castrate Men Treated With Exogenous Testosterone. J. Clin. Endocrinol. Metab. 2016;101:2937–2944. doi: 10.1210/jc.2016-1483. PubMed DOI PMC

Pejcic T., Tosti T., Tesic Z., Milkovic B., Dragicevic D., Kozomara M., Cekerevac M., Dzamic Z. Testosterone and dihydrotestosterone levels in the transition zone correlate with prostate volume. Prostate. 2017;77:1082–1092. doi: 10.1002/pros.23365. PubMed DOI

Yamashita K., Miyashiro Y., Maekubo H., Okuyama M., Honma S., Takahashi M., Numazawa M. Development of highly sensitive quantification method for testosterone and dihydrotestosterone in human serum and prostate tissue by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids. 2009;74:920–926. doi: 10.1016/j.steroids.2009.06.007. PubMed DOI

Olsson M., Ekstrom L., Guillemette C., Belanger A., Rane A., Gustafsson O. Correlation between circulatory, local prostatic, and intra-prostatic androgen levels. Prostate. 2011;71:909–914. doi: 10.1002/pros.21307. PubMed DOI

Titus M.A., Schell M.J., Lih F.B., Tomer K.B., Mohler J.L. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res. 2005;11:4653–4657. doi: 10.1158/1078-0432.CCR-05-0525. PubMed DOI

Neuzillet Y., Raynaud J.P., Radulescu C., Fiet J., Giton F., Dreyfus J.F., Ghoneim T.P., Lebret T., Botto H. Sexual steroids in serum and prostatic tissue of human non-cancerous prostate (STERPROSER trial) Prostate. 2017;77:1512–1519. doi: 10.1002/pros.23429. PubMed DOI

Zhou C.K., Stanczyk F.Z., Hafi M., Veneroso C.C., Lynch B., Falk R.T., Niwa S., Emanuel E., Gao Y.T., Hemstreet G.P., et al. Circulating and intraprostatic sex steroid hormonal profiles in relation to male pattern baldness and chest hair density among men diagnosed with localized prostate cancers. Prostate. 2017;77:1573–1582. doi: 10.1002/pros.23433. PubMed DOI PMC

Zhao M., Baker S.D., Yan X., Zhao Y., Wright W.W., Zirkin B.R., Jarow J.P. Simultaneous determination of steroid composition of human testicular fluid using liquid chromatography tandem mass spectrometry. Steroids. 2004;69:721–726. doi: 10.1016/j.steroids.2004.05.020. PubMed DOI

Lee A.P., Roth M.Y., Nya-Ngatchou J.J., Lin K., Walsh T.J., Page S.T., Matsumoto A.M., Bremner W.J., Amory J.K., Anawalt B.D. Testicular fine-needle aspiration for the assessment of intratesticular hormone concentrations. Asian J. Androl. 2016;18:21–24. PubMed PMC

Roth M.Y., Lin K., Amory J.K., Matsumoto A.M., Anawalt B.D., Snyder C.N., Kalhorn T.F., Bremner W.J., Page S.T. Serum LH correlates highly with intratesticular steroid levels in normal men. J. Androl. 2010;31:138–145. doi: 10.2164/jandrol.109.008391. PubMed DOI PMC

Heracek J., Sobotka V., Kolatorova L., Kocarek J., Hampl R. Serum and intratesticular sex steroids in azoospermic men: How do they correlate? Physiol. Res. 2018;67(Suppl. S3):S521–S524. doi: 10.33549/physiolres.934007. PubMed DOI

Coviello A.D., Bremner W.J., Matsumoto A.M., Herbst K.L., Amory J.K., Anawalt B.D., Yan X., Brown T.R., Wright W.W., Zirkin B.R., et al. Intratesticular testosterone concentrations comparable with serum levels are not sufficient to maintain normal sperm production in men receiving a hormonal contraceptive regimen. J. Androl. 2004;25:931–938. doi: 10.1002/j.1939-4640.2004.tb03164.x. PubMed DOI

Coviello A.D., Matsumoto A.M., Bremner W.J., Herbst K.L., Amory J.K., Anawalt B.D., Sutton P.R., Wright W.W., Brown T.R., Yan X., et al. Low-dose human chorionic gonadotropin maintains intratesticular testosterone in normal men with testosterone-induced gonadotropin suppression. J. Clin. Endocrinol. Metab. 2005;90:2595–2602. doi: 10.1210/jc.2004-0802. PubMed DOI

Page S.T., Kalhorn T.F., Bremner W.J., Anawalt B.D., Matsumoto A.M., Amory J.K. Intratesticular androgens and spermatogenesis during severe gonadotropin suppression induced by male hormonal contraceptive treatment. J. Androl. 2007;28:734–741. doi: 10.2164/jandrol.107.002790. PubMed DOI

Takahashi J., Higashi Y., LaNasa J.A., Yoshida K., Winters S.J., Oshima H., Troen P. Studies of the human testis. XVIII. Simultaneous measurement of nine intratesticular steroids: Evidence for reduced mitochondrial function in testis of elderly men. J. Clin. Endocrinol. Metab. 1983;56:1178–1187. doi: 10.1210/jcem-56-6-1178. PubMed DOI

Huhtaniemi I., Nikula H., Parvinen M., Rannikko S. Pituitary-testicular function of prostatic cancer patients during treatment with a gonadotropin-releasing hormone agonist analog. II. Endocrinology and histology of the testis. J. Androl. 1987;8:363–373. doi: 10.1002/j.1939-4640.1987.tb00978.x. PubMed DOI

Huhtaniemi I., Nikula H., Rannikko S. Pituitary-testicular function of prostatic cancer patients during treatment with a gonadotropin-releasing hormone agonist analog. I. Circulating hormone levels. J. Androl. 1987;8:355–362. doi: 10.1002/j.1939-4640.1987.tb00975.x. PubMed DOI

Makin H.L.J., Gower D.B. Steroid Analysis. Springer; Dordrecht, The Netherlands: 2010.

Segura J., Ventura R., Jurado C. Derivatization procedures for gas chromatographic-mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J. Chromatogr. B Biomed. Sci. Appl. 1998;713:61–90. doi: 10.1016/S0378-4347(98)00089-9. PubMed DOI

Webster S.G. Catalysed derivatisation of trimethylsilyl ethers of ecdysterone: A preliminary study. J. Chromatogr. A. 1985;333:186–190. doi: 10.1016/S0021-9673(01)87340-4. DOI

Marcos J., Pozo O.J. Derivatization of steroids in biological samples for GC-MS and LC-MS analyses. Bioanalysis. 2015;7:2515–2536. doi: 10.4155/bio.15.176. PubMed DOI

Häkkinen M.R., Murtola T., Voutilainen R., Poutanen M., Linnanen T., Koskivuori J., Lakka T., Jääskeläinen J., Auriola S. Simultaneous analysis by LC–MS/MS of 22 ketosteroids with hydroxylamine derivatization and underivatized estradiol from human plasma, serum and prostate tissue. J. Pharm. Biomed. Anal. 2019;164:642–652. doi: 10.1016/j.jpba.2018.11.035. PubMed DOI

Yamashita K., Takahashi M., Tsukamoto S., Numazawa M., Okuyama M., Honma S. Use of novel picolinoyl derivatization for simultaneous quantification of six corticosteroids by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 2007;1173:120–128. doi: 10.1016/j.chroma.2007.10.023. PubMed DOI

Yamashita K., Yamazaki K., Komatsu S., Numazawa M. Fusaric acid as a novel proton-affinitive derivatizing reagent for highly sensitive quantification of hydroxysteroids by LC-ESI-MS/MS. J. Am. Soc. Mass Spectrom. 2010;21:249–253. doi: 10.1016/j.jasms.2009.10.008. PubMed DOI

Yamashita K., Okuyama M., Watanabe Y., Honma S., Kobayashi S., Numazawa M. Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids. 2007;72:819–827. doi: 10.1016/j.steroids.2007.07.003. PubMed DOI

Renne A., Luo L., Jarow J., Wright W.W., Brown T.R., Chen H., Zirkin B.R., Friesen M.D. Simultaneous quantification of steroids in rat intratesticular fluid by HPLC-isotope dilution tandem mass spectrometry. J. Androl. 2012;33:691–698. doi: 10.2164/jandrol.111.014977. PubMed DOI PMC

O’Brien Z., Post N., Brown M., Madan A., Coon T., Luo R., Kohout T.A. Validation and application of a liquid chromatography-tandem mass spectrometric method for the simultaneous determination of testosterone and dihydrotestosterone in rat prostatic tissue using a 96-well format. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009;877:3515–3521. doi: 10.1016/j.jchromb.2009.08.053. PubMed DOI

Adomat H.H., Bains O.S., Lubieniecka J.M., Gleave M.E., Guns E.S., Grigliatti T.A., Reid R.E., Riggs K.W. Validation of a sequential extraction and liquid chromatography-tandem mass spectrometric method for determination of dihydrotestosterone, androstanediol and androstanediol-glucuronide in prostate tissues. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012;902:84–95. doi: 10.1016/j.jchromb.2012.06.031. PubMed DOI

Higashi T., Yamauchi A., Shimada K. 2-hydrazino-1-methylpyridine: A highly sensitive derivatization reagent for oxosteroids in liquid chromatography-electrospray ionization-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005;825:214–222. doi: 10.1016/j.jchromb.2004.12.007. PubMed DOI

Tamae D., Byrns M., Marck B., Mostaghel E.A., Nelson P.S., Lange P., Lin D., Taplin M.-E., Balk S., Ellis W., et al. Development, validation and application of a stable isotope dilution liquid chromatography electrospray ionization/selected reaction monitoring/mass spectrometry (SID-LC/ESI/SRM/MS) method for quantification of keto-androgens in human serum. J. Steroid Biochem. Mol. Biol. 2013;138:281–289. doi: 10.1016/j.jsbmb.2013.06.014. PubMed DOI PMC

Kolatorova Sosvorova L., Chlupacova T., Vitku J., Vlk M., Heracek J., Starka L., Saman D., Simkova M., Hampl R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta. 2017;174:21–28. doi: 10.1016/j.talanta.2017.05.070. PubMed DOI

Šimková M., Vítků J., Kolátorová L., Vrbíková J., Vosátková M., Včelák J., Dušková M. Endocrine disruptors, obesity, and cytokines—How relevant are they to PCOS? Physiol. Res. 2020;69(Suppl. S2):S279–S293. PubMed PMC

Weng Y., Xie F., Xu L., Zagorevski D., Spink D.C., Ding X. Analysis of testosterone and dihydrotestosterone in mouse tissues by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal. Biochem. 2010;402:121–128. doi: 10.1016/j.ab.2010.03.034. PubMed DOI PMC

Higashi T., Ogawa S. Chemical derivatization for enhancing sensitivity during LC/ESI–MS/MS quantification of steroids in biological samples: A review. J. Steroid Biochem. Mol. Biol. 2016;162:57–69. doi: 10.1016/j.jsbmb.2015.10.003. PubMed DOI

Denver N., Khan S., Homer N.Z.M., MacLean M.R., Andrew R. Current strategies for quantification of estrogens in clinical research. J. Steroid Biochem. Mol. Biol. 2019;192:105373. doi: 10.1016/j.jsbmb.2019.04.022. PubMed DOI PMC

Chang K.H., Li R., Papari-Zareei M., Watumull L., Zhao Y.D., Auchus R.J., Sharifi N. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA. 2011;108:13728–13733. doi: 10.1073/pnas.1107898108. PubMed DOI PMC

Barnard M., Mostaghel E.A., Auchus R.J., Storbeck K.-H. The role of adrenal derived androgens in castration resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 2020;197:105506. doi: 10.1016/j.jsbmb.2019.105506. PubMed DOI PMC

Jacobi G.H., Sinterhauf K., Altwein J.E. Prostatic carcinoma: Plasma kinetics and intraprostatic metabolism of testosterone in low-dose estrogen-treated patients in vivo. Urology. 1978;12:359–364. doi: 10.1016/0090-4295(78)90408-9. PubMed DOI

Orestano F., Altwein J.E. Testosterone metabolism in benign prostatic hypertrophy: In vivo studies of gestonorone caproate and cyproterone acetate. Br. J. Urol. 1976;48:485–491. doi: 10.1111/j.1464-410X.1976.tb06687.x. PubMed DOI

Brodie A.M., Banks P.K., Inkster S.E., Son C., Koos R.D. Aromatase and other inhibitors in breast and prostatic cancer. J. Steroid Biochem. Mol. Biol. 1990;37:1043–1048. doi: 10.1016/0960-0760(90)90463-U. PubMed DOI

Ellis J.A., Stebbing M., Harrap S.B. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J. Investig. Dermatol. 2001;116:452–455. doi: 10.1046/j.1523-1747.2001.01261.x. PubMed DOI

Roth M.Y., Page S.T., Lin K., Anawalt B.D., Matsumoto A.M., Snyder C.N., Marck B.T., Bremner W.J., Amory J.K. Dose-dependent increase in intratesticular testosterone by very low-dose human chorionic gonadotropin in normal men with experimental gonadotropin deficiency. J. Clin. Endocrinol. Metab. 2010;95:3806–3813. doi: 10.1210/jc.2010-0360. PubMed DOI PMC

Huhtaniemi I., Rannikko S., Orava M., Vihko R. Steroid sulfates in testis tissue of prostatic cancer patients treated for six months with the gonadotropin releasing hormone agonist buserelin. J. Steroid Biochem. 1989;32:811–813. doi: 10.1016/0022-4731(89)90456-1. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...