Cryptosporidium mortiferum n. sp. (Apicomplexa: Cryptosporidiidae), the species causing lethal cryptosporidiosis in Eurasian red squirrels (Sciurus vulgaris)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
009/2022/Z
Grant Agency of the University of South Bohemia
005/2022/Z
Grant Agency of the University of South Bohemia
3182010314
National Natural Science Foundation of China
GACR 21-23773S
Grant Agency of the Czech Republic
PubMed
37454101
PubMed Central
PMC10349434
DOI
10.1186/s13071-023-05844-8
PII: 10.1186/s13071-023-05844-8
Knihovny.cz E-zdroje
- Klíčová slova
- Biology, Course of infection, Cryptosporidiosis, Genetic diversity, Mortality, Oocyst size, Phylogeny,
- MeSH
- Cryptosporidiidae * MeSH
- Cryptosporidium * MeSH
- feces parazitologie MeSH
- fretky MeSH
- fylogeneze MeSH
- genotyp MeSH
- Gerbillinae MeSH
- kryptosporidióza * parazitologie MeSH
- kur domácí MeSH
- lidé MeSH
- morčata MeSH
- myši MeSH
- oocysty MeSH
- Sciuridae parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- morčata MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cryptosporidium spp. are globally distributed parasites that infect epithelial cells in the microvillus border of the gastrointestinal tract of all classes of vertebrates. Cryptosporidium chipmunk genotype I is a common parasite in North American tree squirrels. It was introduced into Europe with eastern gray squirrels and poses an infection risk to native European squirrel species, for which infection is fatal. In this study, the biology and genetic variability of different isolates of chipmunk genotype I were investigated. METHODS: The genetic diversity of Cryptosporidium chipmunk genotype I was analyzed by PCR/sequencing of the SSU rRNA, actin, HSP70, COWP, TRAP-C1 and gp60 genes. The biology of chipmunk genotype I, including oocyst size, localization of the life cycle stages and pathology, was examined by light and electron microscopy and histology. Infectivity to Eurasian red squirrels and eastern gray squirrels was verified experimentally. RESULTS: Phylogenic analyses at studied genes revealed that chipmunk genotype I is genetically distinct from other Cryptosporidium spp. No detectable infection occurred in chickens and guinea pigs experimentally inoculated with chipmunk genotype I, while in laboratory mice, ferrets, gerbils, Eurasian red squirrels and eastern gray squirrels, oocyst shedding began between 4 and 11 days post infection. While infection in mice, gerbils, ferrets and eastern gray squirrels was asymptomatic or had mild clinical signs, Eurasian red squirrels developed severe cryptosporidiosis that resulted in host death. The rapid onset of clinical signs characterized by severe diarrhea, apathy, loss of appetite and subsequent death of the individual may explain the sporadic occurrence of this Cryptosporidium in field studies and its concurrent spread in the population of native European squirrels. Oocysts obtained from a naturally infected human, the original inoculum, were 5.64 × 5.37 μm and did not differ in size from oocysts obtained from experimentally infected hosts. Cryptosporidium chipmunk genotype I infection was localized exclusively in the cecum and anterior part of the colon. CONCLUSIONS: Based on these differences in genetics, host specificity and pathogenicity, we propose the name Cryptosporidium mortiferum n. sp. for this parasite previously known as Cryptosporidium chipmunk genotype I.
Zobrazit více v PubMed
Nader JL, Mathers TC, Ward BJ, Pachebat JA, Swain MT, Robinson G, et al. Evolutionary genomics of anthroponosis in Cryptosporidium. Nat Microbiol. 2019;4:826–836. doi: 10.1038/s41564-019-0377-x. PubMed DOI
Tyzzer EE. An extracellular coccidium, Cryptosporidium muris (gen. et sp. nov.) of the gastric glands of the common mouse. J Med Res. 1910;23:487–509. PubMed PMC
Slavin D. Cryptosporidium meleagridis (sp. nov.) J Comp Pathol. 1955;65:262–266. doi: 10.1016/S0368-1742(55)80025-2. PubMed DOI
Vetterling JM, Jervis HR, Merrill TG, Sprinz H. Cryptosporidium wrairi sp. n. from the guinea pig Cavia porcellus, with an emendation of the genus. J Protozool. 1971;18:243–247. doi: 10.1111/j.1550-7408.1971.tb03315.x. PubMed DOI
Dubey JP, Markovits JE, Killary KA. Cryptosporidium muris-like infection in stomach of cynomolgus monkeys (Macaca fascicularis) Vet Pathol. 2002;39:363–371. doi: 10.1354/vp.39-3-363. PubMed DOI
Kváč M, Havrdová N, Hlasková L, Daňková T, Kanděra J, Ježková J, et al. Cryptosporidium proliferans n. sp. (Apicomplexa: Cryptosporidiidae): molecular and biological evidence of cryptic species within gastric Cryptosporidium of mammals. PLoS ONE. 2016;11:e0147090. doi: 10.1371/journal.pone.0147090. PubMed DOI PMC
Holubová N, Tůmová L, Sak B, Hejzlerová A, Konečný R, McEvoy J, et al. Description of Cryptosporidium ornithophilus sp. n. (Apicomplexa: Cryptosporidiidae) as a new species and diversity in farmed ostriches. Parasit Vectors. 2020;13:340. doi: 10.1186/s13071-020-04191-2. PubMed DOI PMC
Prediger J, Ježková J, Holubová N, Sak B, Konečný R, Rost M, et al. Cryptosporidium sciurinum n. sp. (Apicomplexa: Cryptosporidiidae) in Eurasian Red Squirrels (Sciurus vulgaris) Microorganisms. 2021;9:2050. doi: 10.3390/microorganisms9102050. PubMed DOI PMC
Šlapeta J. Cryptosporidiosis and Cryptosporidium species in animals and humans: a thirty colour rainbow? Int J Parasitol. 2013;43:957–970. doi: 10.1016/j.ijpara.2013.07.005. PubMed DOI
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia—a 50 year perspective (1971–2021) Int J Parasitol. 2021;51:1099–1119. doi: 10.1016/j.ijpara.2021.08.007. PubMed DOI
Kváč M, McEvoy J, Stenger B, Clark M. Cryptosporidiosis in other vertebrates. In: Cacciò SM, Widmer G, editors. Cryptosporidium: parasite and disease. 1. Wien: Springer; 2014. pp. 237–326.
Elwin K, Hadfield SJ, Robinson G, Crouch ND, Chalmers RM. Cryptosporidium viatorum n. sp. (Apicomplexa: Cryptosporidiidae) among travellers returning to Great Britain from the Indian subcontinent, 2007–2011. Int J Parasitol. 2012;42:675–682. doi: 10.1016/j.ijpara.2012.04.016. PubMed DOI
Iseki M. Cryptosporidium felis sp. n. (protozoa: Eimeriorina) from the domestic cat. Jpn J Protozool. 1979;28:285–307.
Morgan-Ryan UM, Fall A, Ward LA, Hijjawi N, Sulaiman I, Fayer R, et al. Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens. J Eukaryot Microbiol. 2002;49:433–440. doi: 10.1111/j.1550-7408.2002.tb00224.x. PubMed DOI
Kváč M, Vlnatá G, Ježková J, Horčičková M, Konečný R, Hlásková L, et al. Cryptosporidium occultus sp. n. (Apicomplexa: Cryptosporidiidae) in rats. Eur J Protistol. 2018;63:96–104. doi: 10.1016/j.ejop.2018.02.001. PubMed DOI
Fayer R, Santín M, Xiao L. Cryptosporidium bovis n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus) J Parasitol. 2005;91:624–629. doi: 10.1645/GE-3435. PubMed DOI
Holubová N, Sak B, Horčičková M, Hlásková L, Květoňová D, Menchaca S, et al. Cryptosporidium avium n. sp. (Apicomplexa: Cryptosporidiidae) in birds. Parasitol Res. 2016;115:2243–2251. doi: 10.1007/s00436-016-4967-8. PubMed DOI PMC
Jiang J, Alderisio KA, Xiao L. Distribution of Cryptosporidium genotypes in storm event water samples from three watersheds in New York. Appl Environ Microbiol. 2005;71:4446–4454. doi: 10.1128/AEM.71.8.4446-4454.2005. PubMed DOI PMC
Feng Y, Alderisio KA, Yang W, Blancero LA, Kuhne WG, Nadareski CA, et al. Cryptosporidium genotypes in wildlife from a New York watershed. Appl Environ Microbiol. 2007;73:6475–6483. doi: 10.1128/AEM.01034-07. PubMed DOI PMC
Ziegler PE, Wade SE, Schaaf SL, Chang YF, Mohammed HO. Cryptosporidium spp. from small mammals in the New York City watershed. J Wildl Dis. 2007;43:586–596. doi: 10.7589/0090-3558-43.4.586. PubMed DOI
Kváč M, Hofmannová L, Bertolino S, Wauters L, Tosi G, Modrý D. Natural infection with two genotypes of Cryptosporidium in red squirrels (Sciurus vulgaris) in Italy. Folia Parasitol. 2008;55:95–99. doi: 10.14411/fp.2008.012. PubMed DOI
Everest DJ, Green C, Dastjerdi A, Davies H, Cripps R, McKinney C, et al. Opportunistic viral surveillance confirms the ongoing disease threat grey squirrels pose to sympatric red squirrel populations in the UK. Vet Rec. 2023;192:e2834. doi: 10.1002/vetr.2834. PubMed DOI
Bertolino S, di Montezemolo NC, Preatoni DG, Wauters LA, Martinoli A. A grey future for Europe: Sciurus carolinensis is replacing native red squirrels in Italy. Biol Invasions. 2014;16:53–62. doi: 10.1007/s10530-013-0502-3. DOI
Prediger J, Horčičková M, Hofmannová L, Sak B, Ferrari N, Mazzamuto MV, et al. Native and introduced squirrels in Italy host different Cryptosporidium spp. Eur J Protistol. 2017;61:64–75. doi: 10.1016/j.ejop.2017.09.007. PubMed DOI
Bujila I, Troell K, Fischerstrom K, Nordahl M, Killander G, Hansen A, et al. Cryptosporidium chipmunk genotype I—an emerging cause of human cryptosporidiosis in Sweden. Infect Genet Evol. 2021;92:104895. doi: 10.1016/j.meegid.2021.104895. PubMed DOI
Arrowood MJ, Donaldson K. Improved purification methods for calf-derived Cryptosporidium parvum oocysts using discontinuous sucrose and cesium chloride gradients. J Eukaryot Microbiol. 1996;43:89S. doi: 10.1111/j.1550-7408.1996.tb05015.x. PubMed DOI
Miláček P, Vítovec J. Differential staining of cryptosporidia by aniline-carbol-methyl violet and tartrazine in smears from feces and scrapings of intestinal mucosa. Folia Parasitol. 1985;32:50. PubMed
Henriksen SA, Pohlenz JF. Staining of cryptosporidia by a modified Ziehl-Neelsen technique. Acta Vet Scand. 1981;22:594–596. doi: 10.1186/BF03548684. PubMed DOI PMC
Ley DH, Levy MG, Hunter L, Corbett W, Barnes HJ. Cryptosporidia-positive rates of avian necropsy accessions determined by examination of auramine O-stained fecal smears. Avian Dis. 1988;32:108–113. doi: 10.2307/1590957. PubMed DOI
Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A. Molecular characterization of Cryptosporidium oocysts in samples of raw surface water and wastewater. Appl Environ Microbiol. 2001;67:1097–1101. doi: 10.1128/AEM.67.3.1097-1101.2001. PubMed DOI PMC
Sulaiman IM, Lal AA, Xiao L. Molecular phylogeny and evolutionary relationships of Cryptosporidium parasites at the actin locus. J Parasitol. 2002;88:388–394. doi: 10.1645/0022-3395(2002)088[0388:MPAERO]2.0.CO;2. PubMed DOI
Alves M, Xiao LH, Sulaiman I, Lal AA, Matos O, Antunes F. Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol. 2003;41:2744–2747. doi: 10.1128/JCM.41.6.2744-2747.2003. PubMed DOI PMC
Li N, Xiao L, Alderisio K, Elwin K, Cebelinski E, Chalmers R, et al. Subtyping Cryptosporidium ubiquitum, a zoonotic pathogen emerging in humans. Emerg Infect Dis. 2014;20:217–224. doi: 10.3201/eid2002.121797. PubMed DOI PMC
Guo Y, Cebelinski E, Matusevich C, Alderisio KA, Lebbad M, McEvoy J, et al. Subtyping novel zoonotic pathogen Cryptosporidium chipmunk genotype I. J Clin Microbiol. 2015;53:1648–1654. doi: 10.1128/JCM.03436-14. PubMed DOI PMC
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol. 1992;9:678–687. PubMed
Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM, editor. Some mathematical questions in biology: DNA sequence analysis (Lectures on mathematics in the life sciences) New York: American Mathematical Society; 1986. pp. 57–86.
Kváč M, Vítovec J. Prevalence and pathogenicity of Cryptosporidium andersoni in one herd of beef cattle. J Vet Med B. 2003;50:451–457. doi: 10.1046/j.0931-1793.2003.00701.x. PubMed DOI
Valigurová A, Jirku M, Koudela B, Gelnar M, Modrý D, Šlapeta J. Cryptosporidia: epicellular parasites embraced by the host cell membrane. Int J Parasitol. 2008;38:913–922. doi: 10.1016/j.ijpara.2007.11.003. PubMed DOI
Lee JH. Prevalence and molecular characteristics of Enterocytozoon bieneusi in cattle in Korea. Parasitol Res. 2007;101:391–396. doi: 10.1007/s00436-007-0468-0. PubMed DOI
Team RC . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
Song J, Kim CY, Chang SN, Abdelkader TS, Han J, Kim TH, et al. Detection and molecular characterization of Cryptosporidium spp. from wild rodents and insectivores in South Korea. Korean J Parasitol. 2015;53:737–743. doi: 10.3347/kjp.2015.53.6.737. PubMed DOI PMC
Feltus DC, Giddings CW, Schneck BL, Monson T, Warshauer D, McEvoy JM. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. J Clin Microbiol. 2006;44:4303–4308. doi: 10.1128/JCM.01067-06. PubMed DOI PMC
Jalovecká M, Sak B, Kváč M, Květonová D, Kučerová Z, Salát J. Activation of protective cell-mediated immune response in gastric mucosa during Cryptosporidium muris infection and re-infection in immunocompetent mice. Parasitol Res. 2010;106:1159–1166. doi: 10.1007/s00436-010-1785-2. PubMed DOI
Kváč M, Kodádková A, Sak B, Květoňová D, Jalovecká M, Rost M, et al. Activated CD8+ T cells contribute to clearance of gastric Cryptosporidium muris infections. Parasite Immunol. 2011;33:210–216. doi: 10.1111/j.1365-3024.2010.01271.x. PubMed DOI
Kváč M, McEvoy J, Loudová M, Stenger B, Sak B, Květoňová D, et al. Coevolution of Cryptosporidium tyzzeri and the house mouse (Mus musculus) Int J Parasitol. 2013;43:805–817. doi: 10.1016/j.ijpara.2013.04.007. PubMed DOI PMC
Čondlová S, Horčičková M, Sak B, Květoňová D, Hlásková L, Konečný R, et al. Cryptosporidium apodemi sp. n. and Cryptosporidium ditrichi sp. n. (Apicomplexa: Cryptosporidiidae) in Apodemus spp. Eur J Protistol. 2018;63:1–12. doi: 10.1016/j.ejop.2017.12.006. PubMed DOI
Horčičková M, Čondlová S, Holubová N, Sak B, Květoňová D, Hlasková L, et al. Diversity of Cryptosporidium in common voles and description of Cryptosporidium alticolis sp. n. and Cryptosporidium microti sp. n. (Apicomplexa: Cryptosporidiidae) Parasitology. 2019;146:220–233. doi: 10.1017/S0031182018001142. PubMed DOI PMC
Fayer R, Santín M, Trout JM. Cryptosporidium ryanae n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus) Vet Parasitol. 2008;156:191–198. doi: 10.1016/j.vetpar.2008.05.024. PubMed DOI
Ren X, Zhao J, Zhang L, Ning C, Jian F, Wang R, et al. Cryptosporidium tyzzeri n. sp. (Apicomplexa: Cryptosporidiidae) in domestic mice (Mus musculus) Exp Parasitol. 2012;130:274–281. doi: 10.1016/j.exppara.2011.07.012. PubMed DOI
Tyzzer EE. Cryptosporidium parvum (sp. nov.) a coccidium found in the small intestine of the common mouse. Arch Protistenkd. 1912;26:394–412.
Ježková J, Limpouchová Z, Prediger J, Holubová N, Sak B, Konečný R, et al. Cryptosporidium myocastoris n. sp. (Apicomplexa: Cryptosporidiidae), the species adapted to the nutria (Myocastor coypus) Microorganisms. 2021;9:813. doi: 10.3390/microorganisms9040813. PubMed DOI PMC
Kváč M, Kestřánová M, Pinková M, Květoňová D, Kalinová J, Wagnerová P, et al. Cryptosporidium scrofarum n. sp. (Apicomplexa: Cryptosporidiidae) in domestic pigs (Sus scrofa) Vet Parasitol. 2013;191:218–227. doi: 10.1016/j.vetpar.2012.09.005. PubMed DOI PMC
Ryan UM, Monis P, Enemark HL, Sulaiman I, Samarasinghe B, Read C, et al. Cryptosporidium suis n. sp. (Apicomplexa: Cryptosporidiidae) in pigs (Sus scrofa) J Parasitol. 2004;90:769–773. doi: 10.1645/GE-202R1. PubMed DOI
Current WL, Upton SJ, Haynes TB. The life cycle of Cryptosporidium baileyi n. sp. (Apicomplexa, Cryptosporidiidae) infecting chickens. J Protozool. 1986;33:289–296. doi: 10.1111/j.1550-7408.1986.tb05608.x. PubMed DOI
Hijjawi NS, Meloni BP, Morgan UM, Thompson RC. Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture. Int J Parasitol. 2001;31:1048–1055. doi: 10.1016/S0020-7519(01)00212-0. PubMed DOI
Hijjawi N, Estcourt A, Yang R, Monis P, Ryan U. Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Vet Parasitol. 2010;169:29–36. doi: 10.1016/j.vetpar.2009.12.021. PubMed DOI
Borowski H, Thompson RC, Armstrong T, Clode PL. Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology. 2010;137:13–26. doi: 10.1017/S0031182009990837. PubMed DOI
Fayer R, Santín M, Macarisin D. Cryptosporidium ubiquitum n. sp. in animals and humans. Vet Parasitol. 2010;172:23–32. doi: 10.1016/j.vetpar.2010.04.028. PubMed DOI
Melicherová J, Ilgova J, Kváč M, Sak B, Koudela B, Valigurová A. Life cycle of Cryptosporidium muris in two rodents with different responses to parasitization. Parasitology. 2014;141:287–303. doi: 10.1017/S0031182013001637. PubMed DOI
Holubová N, Zikmundová V, Limpouchová Z, Sak B, Konečný R, Hlásková L, et al. Cryptosporidium proventriculi sp. n. (Apicomplexa: Cryptosporidiidae) in Psittaciformes birds. Eur J Protistol. 2019;69:70–87. doi: 10.1016/j.ejop.2019.03.001. PubMed DOI
English ED, Guerin A, Tandel J, Striepen B. Live imaging of the Cryptosporidium parvum life cycle reveals direct development of male and female gametes from type I meronts. PLoS Biol. 2022;20:e3001604. doi: 10.1371/journal.pbio.3001604. PubMed DOI PMC
Umemiya R, Fukuda M, Fujisaki K, Matsui T. Electron microscopic observation of the invasion process of Cryptosporidium parvum in severe combined immunodeficiency mice. J Parasitol. 2005;91:1034–1039. doi: 10.1645/GE-508R.1. PubMed DOI
Insulander M, Silverlas C, Lebbad M, Karlsson L, Mattsson JG, Svenungsson B. Molecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden. Epidemiol Infect. 2013;141:1009–1020. doi: 10.1017/S0950268812001665. PubMed DOI PMC
Nichols GL, Chalmers RM, Hadfield SJ. Molecular epidemiology of human cryptosporidiosis. In: Cacciò SM, Widmer G, editors. Cryptosporidium: parasite and disease. 1. Wien: Springer; 2014. pp. 237–326.