Influence of Selective Deoxyfluorination on the Molecular Structure of Type-2 N-Acetyllactosamine

. 2024 Sep 06 ; 89 (17) : 11875-11890. [epub] 20240823

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39178339

N-Acetyllactosamine is a common saccharide motif found in various biologically active glycans. This motif usually works as a backbone for additional modifications and thus significantly influences glycan conformational behavior and biological activity. In this work, we have investigated the type-2 N-acetyllactosamine scaffold using the complete series of its monodeoxyfluorinated analogs. These glycomimetics have been studied by molecular mechanics, quantum mechanics, X-ray crystallography, and various NMR techniques, which have provided a comprehensive and complete insight into the role of individual hydroxyl groups in the conformational behavior and lipophilicity of N-acetyllactosamine.

Zobrazit více v PubMed

Glycans (G02645 ) in IUPAC Compendium of Chemical Terminology, 3rd ed. International Union of Pure and Applied Chemistry, 2006. Online version 3.0.1, 201910.1351/goldbook.G02645. DOI

Buffone A. Jr.; Weaver V. M. Don’t Sugarcoat It: How Glycocalyx Composition Influences Cancer Progression. J. Cell Biol. 2020, 219 (1), e20191007010.1083/jcb.201910070. PubMed DOI PMC

Ambrosi M.; Cameron N. R.; Davis B. G. Lectins: Tools for the Molecular Understanding of the Glycocode. Org. Biomol. Chem. 2005, 3 (9), 1593–1608. 10.1039/b414350g. PubMed DOI

Leusmann S.; Ménová P.; Shanin E.; Titz A.; Rademacher C. Glycomimetics for the Inhibition and Modulation of Lectins. Chem. Soc. Rev. 2023, 52 (11), 3663–3740. 10.1039/D2CS00954D. PubMed DOI PMC

Tamburrini A.; Colombo C.; Bernardi A. Design and Synthesis of Glycomimetics: Recent Advances. Med. Res. Rev. 2020, 40 (2), 495–531. 10.1002/med.21625. PubMed DOI

Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics 2019, 4 (3), 53.10.3390/biomimetics4030053. PubMed DOI PMC

Angulo J.; Zimmer J.; Imberty A.; Prestegard J. H.. Structural Biology of Glycan Recognition. In Essentials of Glycobiology, 4th ed.; Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Mohnen D., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 2022; pp 403−41810.1101/glycobiology.4e.30. DOI

Verteramo M. L.; Stenström O.; Ignjatović M. M.; Caldararu O.; Olsson M. A.; Manzoni F.; Leffler H.; Oksanen E.; Logan D. T.; Nilsson U. J.; Ryde U.; Akke M. Interplay between Conformational Entropy and Solvation Entropy in Protein−Ligand Binding. J. Am. Chem. Soc. 2019, 141 (5), 2012–2026. 10.1021/jacs.8b11099. PubMed DOI

Hevey R. Strategies for the Development of Glycomimetic Drug Candidates. Pharmaceuticals 2019, 12 (2), 55.10.3390/ph12020055. PubMed DOI PMC

Yu Y.; Delbianco M. Conformational Studies of Oligosaccharides. Chem.—Eur. J. 2020, 26 (44), 9814–9825. 10.1002/chem.202001370. PubMed DOI PMC

Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS Au 2024, 4 (1), 20–39. 10.1021/jacsau.3c00639. PubMed DOI PMC

Dal Colle M. C. S.; Fittolani G.; Delbianco M. Synthetic Approaches to Break the Chemical Shift Degeneracy of Glycans. ChemBioChem. 2022, 23 (24), e20220041610.1002/cbic.202200416. PubMed DOI PMC

Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chem.—Eur. J. 2021, 27, 2240–2253. 10.1002/chem.202003135. PubMed DOI

Linclau B.; Ardá A.; Reichardt N.-C.; Sollogoub M.; Unione L.; Vincent S. P.; Jiménez-Barbero J. Fluorinated Carbohydrates as Chemical Probes for Molecular Recognition Studies. Current Status and Perspectives. Chem. Soc. Rev. 2020, 49 (12), 3863–3888. 10.1039/C9CS00099B. PubMed DOI

St-Gelais J.; Côté É.; Lainé D.; Johnson P. A.; Giguère D. Addressing the Structural Complexity of Fluorinated Glucose Analogues: Insight into Lipophilicities and Solvation Effects. Chem.—Eur. J. 2020, 26 (59), 13499–13506. 10.1002/chem.202002825. PubMed DOI

Hamala V.; Červenková Št’astná L.; Kurfiřt M.; Cuřínová P.; Dračínský M.; Karban J. Synthesis of Multiply Fluorinated N-Acetyl-D-Glucosamine and D-Galactosamine Analogs via the Corresponding Deoxyfluorinated Glucosazide and Galactosazide Phenyl Thioglycosides. Beilstein J. Org. Chem. 2021, 17 (1), 1086–1095. 10.3762/bjoc.17.85. PubMed DOI PMC

Fernández P.; Jiménez-Barbero J. The Conformation of Some Halodeoxy Analogues of Methyl β-Lactoside in D2O and DMSO-D6 Solutions. J. Carbohydr. Chem. 1994, 13 (2), 207–233. 10.1080/07328309408009189. DOI

Bock K.; Duus J. Ø. A Conformational Study of Hydroxymethyl Groups in Carbohydrates Investigated by 1H NMR Spectroscopy. J. Carbohydr. Chem. 1994, 13 (4), 513–543. 10.1080/07328309408011662. DOI

Denavit V.; Lainé D.; Bouzriba C.; Shanina E.; Gillon É.; Fortin S.; Rademacher C.; Imberty A.; Giguère D. Stereoselective Synthesis of Fluorinated Galactopyranosides as Potential Molecular Probes for Galactophilic Proteins: Assessment of Monofluorogalactoside−LecA Interactions. Chem.—Eur. J. 2019, 25, 4478–4490. 10.1002/chem.201806197. PubMed DOI

Stanley P.; Moremen K. W.; Lewis N. E.; Taniguchi N.; Aebi M.. N-Glycans. In Essentials of Glycobiology; Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Mohnen D., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 202210.1101/glycobiology.4e.9. DOI

Brockhausen I.; Wandall H. H.; Hagen K. G. T.; Stanley P.. O-GalNAc Glycans. In Essentials of Glycobiology; Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Mohnen D., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 202210.1101/glycobiology.4e.10. DOI

Magalhães A.; Ismail M. N.; Reis C. A. Sweet Receptors Mediate the Adhesion of the Gastric Pathogen Helicobacter Pylori: Glycoproteomic Strategies. Expert Rev. Proteomics 2010, 7 (3), 307–310. 10.1586/epr.10.18. PubMed DOI

Mitchell E.; Houles C.; Sudakevitz D.; Wimmerova M.; Gautier C.; Pérez S.; Wu A. M.; Gilboa-Garber N.; Imberty A. Structural Basis for Oligosaccharide-Mediated Adhesion of Pseudomonas Aeruginosa in the Lungs of Cystic Fibrosis Patients. Nat. Struct. Mol. Biol. 2002, 9 (12), 918–921. 10.1038/nsb865. PubMed DOI

Kerr C. L.; Hanna W. F.; Shaper J. H.; Wright W. W. Lewis X-Containing Glycans Are Specific and Potent Competitive Inhibitors of the Binding of ZP3 to Complementary Sites on Capacitated, Acrosome-Intact Mouse Sperm1. Biol. Reprod. 2004, 71 (3), 770–777. 10.1095/biolreprod.103.023812. PubMed DOI

Bojar D.; Meche L.; Meng G.; Eng W.; Smith D. F.; Cummings R. D.; Mahal L. K. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem. Biol. 2022, 17 (11), 2993–3012. 10.1021/acschembio.1c00689. PubMed DOI PMC

Cummings R. D.; Liu F.-T.; Rabinovich G. A.; Stowell S. R.; Vasta G. R.. Galectins. In Essentials of Glycobiology; Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Mohnen D., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 2022.10.1101/glycobiology.4e.36. DOI

Arnold J. W.; Whittington H. D.; Dagher S. F.; Roach J.; Azcarate-Peril M. A.; Bruno-Barcena J. M. Safety and Modulatory Effects of Humanized Galacto-Oligosaccharides on the Gut Microbiome. Front. Nutr. 2021, 8, 640100.10.3389/fnut.2021.640100. PubMed DOI PMC

Varki A.; Cummings R. D.; Aebi M.; Packer N. H.; Seeberger P. H.; Esko J. D.; Stanley P.; Hart G.; Darvill A.; Kinoshita T.; Prestegard J. J.; Schnaar R. L.; Freeze H. H.; Marth J. D.; Bertozzi C. R.; Etzler M. E.; Frank M.; Vliegenthart J. F.; Lütteke T.; Perez S.; Bolton E.; Rudd P.; Paulson J.; Kanehisa M.; Toukach P.; Aoki-Kinoshita K. F.; Dell A.; Narimatsu H.; York W.; Taniguchi N.; Kornfeld S. Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology 2015, 25 (12), 1323–1324. 10.1093/glycob/cwv091. PubMed DOI PMC

Longchambon F.; Ohanessian J.; Gillier-Pandraud H.; Duchet D.; Jacquinet J.-C.; Sinaÿ P. Structure de la N-acétyllactosamine (acétamido-2 désoxy-2 O-β-d-galactopyrannosyl-4a-d-Glucopyrannose). Acta Cryst. Section B 1981, 37 (3), 601–607. 10.1107/S0567740881003658. DOI

García-Aparicio V.; Sollogoub M.; Blériot Y.; Colliou V.; André S.; Asensio J. L.; Cañada F. J.; Gabius H.-J.; Sinaÿ P.; Jiménez-Barbero J. The Conformation of the C-Glycosyl Analogue of N-Acetyl-Lactosamine in the Free State and Bound to a Toxic Plant Agglutinin and Human Adhesion/Growth-Regulatory Galectin-1. Carbohydr. Res. 2007, 342 (12), 1918–1928. 10.1016/j.carres.2007.02.034. PubMed DOI

Cocinero E. J.; Gamblin D. P.; Davis B. G.; Simons J. P. The Building Blocks of Cellulose: The Intrinsic Conformational Structures of Cellobiose, Its Epimer, Lactose, and Their Singly Hydrated Complexes. J. Am. Chem. Soc. 2009, 131 (31), 11117–11123. 10.1021/ja903322w. PubMed DOI

Rivera-Sagredo A.; Jiménez-Barbero J.; Martín-Lomas M. N.m.r. Studies of the Conformation of Analogues of Methyl β-Lactoside in Methyl Sulfoxide-D6. Carbohydr. Res. 1991, 221 (1), 37–47. 10.1016/0008-6215(91)80047-Q. PubMed DOI

Erdélyi M.; d’Auvergne E.; Navarro-Vázquez A.; Leonov A.; Griesinger C. Dynamics of the Glycosidic Bond: Conformational Space of Lactose. Chem.—Eur. J. 2011, 17, 9368–9376. 10.1002/chem.201100854. PubMed DOI

Schnupf U.; Momany F. A. Rapidly Calculated DFT Relaxed Iso-Potential ϕ/ψ Maps: β-Cellobiose. Cellulose 2011, 18 (4), 859–887. 10.1007/s10570-011-9537-8. DOI

Larsson E. A.; Staaf M.; Söderman P.; Höög C.; Widmalm G. Determination of the Conformational Flexibility of Methyl α-Cellobioside in Solution by NMR Spectroscopy and Molecular Simulations. J. Phys. Chem. A 2004, 108 (18), 3932–3937. 10.1021/jp049714c. DOI

Tvaroška I. Theoretical Studies on the Conformation of Saccharides. VIII. Solvent Effect on the Stability of β-Cellobiose Conformers. Biopolymers 1984, 23 (10), 1951–1960. 10.1002/bip.360231011. DOI

Yui T.; Kobayashi H.; Kitamura S.; Imada K. Conformational Analysis of Chitobiose and Chitosan. Biopolymers 1994, 34 (2), 203–208. 10.1002/bip.360340206. DOI

Mo F.; Jensen L. H. The crystal structure of a β-(1→ 4) linked disaccharide, α-N,N’-diacetylchitobiose monohydrate. Acta Cryst. B 1978, 34 (5), 1562–1569. 10.1107/S0567740878006081. DOI

Fettke A.; Peikow D.; Peter M. G.; Kleinpeter E. Synthesis and Conformational Analysis of Glycomimetic Analogs of Thiochitobiose. Tetrahedron 2009, 65 (22), 4356–4366. 10.1016/j.tet.2009.03.067. DOI

Mo F. On the Conformational Variability of the N-Acetylglucosamine β-(1→4) Linked Dimer. Crystal and Molecular Structure of Beta-N,N’-Diacetylchitobiose Trihydrate. Acta Chem. Scand. A 1979, 33, 207–218. 10.3891/acta.chem.scand.33a-0207. DOI

Martín-Pastor M.; Canales A.; Corzana F.; Asensio J. L.; Jiménez-Barbero J. Limited Flexibility of Lactose Detected from Residual Dipolar Couplings Using Molecular Dynamics Simulations and Steric Alignment Methods. J. Am. Chem. Soc. 2005, 127 (10), 3589–3595. 10.1021/ja043445m. PubMed DOI

Zhang W.; Turney T.; Meredith R.; Pan Q.; Sernau L.; Wang X.; Hu X.; Woods R. J.; Carmichael I.; Serianni A. S. Conformational Populations of β-(1→4) O-Glycosidic Linkages Using Redundant NMR J-Couplings and Circular Statistics. J. Phys. Chem. B 2017, 121 (14), 3042–3058. 10.1021/acs.jpcb.7b02252. PubMed DOI PMC

Bernet B.; Vasella A. Intra- and Intermolecular H-Bonds of Alcohols in DMSO, 1H-NMR Analysis of Inter-Residue H-Bonds in Selected Oligosaccharides: Cellobiose, Lactose, N,N′-Diacetylchitobiose, Maltose, Sucrose, Agarose, and Hyaluronates. Helv. Chim. Acta 2000, 83 (9), 2055–2071. 10.1002/1522-2675(20000906)83:9<2055::AID-HLCA2055>3.0.CO;2-C. DOI

Rönnols J.; Engström O.; Schnupf U.; Säwén E.; Brady J. W.; Widmalm G. Inter-Residual Hydrogen Bonding in Carbohydrates Unraveled by NMR Spectroscopy and Molecular Dynamics Simulations. ChemBioChem. 2019, 20 (19), 2519–2528. 10.1002/cbic.201900301. PubMed DOI

Kurfiřt M.; Dračínský M.; Červenková Št’astná L.; Cuřínová P.; Hamala V.; Hovorková M.; Bojarová P.; Karban J. Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19F NMR Probes to Study Carbohydrate-Galectin Interactions. Chem.—Eur. J. 2021, 27 (51), 13040–13051. 10.1002/chem.202101752. PubMed DOI

Klamt A.; Eckert F. COSMO-RS: A Novel and Efficient Method for the a Priori Prediction of Thermophysical Data of Liquids. Fluid Phase Equilib. 2000, 172 (1), 43–72. 10.1016/S0378-3812(00)00357-5. DOI

Bannan C. C.; Burley K. H.; Chiu M.; Shirts M. R.; Gilson M. K.; Mobley D. L. Blind Prediction of Cyclohexane-Water Distribution Coefficients from the SAMPL5 Challenge. J. Comput. Aided Mol. Des. 2016, 30 (11), 927–944. 10.1007/s10822-016-9954-8. PubMed DOI PMC

Vidal P.; Jiménez-Barbero J.; Espinosa J. F. Conformational Flexibility around the Gal-β-(1 → 3)-Glc Linkage: Experimental Evidence for the Existence of the Anti-ψ Conformation in Aqueous Solution. Carbohydr. Res. 2016, 433, 36–40. 10.1016/j.carres.2016.06.009. PubMed DOI

O’Dell W. B.; Baker D. C.; McLain S. E. Structural Evidence for Inter-Residue Hydrogen Bonding Observed for Cellobiose in Aqueous Solution. PLoS One 2012, 7 (10), e4531110.1371/journal.pone.0045311. PubMed DOI PMC

Fowler P.; Bernet B.; Vasella A. A 1H-NMR Spectroscopic Investigation of the Conformation of the Acetamido Group in Some Derivatives of N-Acetyl-d-Allosamine and -d-Glucosamine. Helv. Chim. Acta 1996, 79 (1), 269–287. 10.1002/hlca.19960790127. DOI

Grindley T. B.Structure and Conformation of Carbohydrates. In Glycoscience: Chemistry and Chemical Biology; Fraser-Reid B. O., Tatsuta K., Thiem J., Eds.; Springer: Berlin, Heidelberg, 2008; pp 3−5510.1007/978-3-540-30429-6_1. DOI

Battistel M. D.; Azurmendi H. F.; Yu B.; Freedberg D. I. NMR of Glycans: Shedding New Light on Old Problems. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 79, 48–68. 10.1016/j.pnmrs.2014.01.001. PubMed DOI

Csuk R.; Glänzer B. I. N.M.R.. Spectroscopy of Fluorinated Monosaccharides. In Adv. Carbohydr. Chem. Biochem.; Tipson R. S., Horton D., Eds.; Academic Press, 1988; Vol. 46, pp 73−17710.1016/S0065-2318(08)60165-1. DOI

Michalik M.; Hein M.; Frank M. NMR Spectra of Fluorinated Carbohydrates. Carbohydr. Res. 2000, 327 (1), 185–218. 10.1016/S0008-6215(99)00323-7. PubMed DOI

Chaloupecká E.; Kurfiřt M.; Červenková Št’astná L.; Karban J.; Dračínský M. Exploring Long-Range Fluorine−Carbon J-Coupling for Conformational Analysis of Deoxyfluorinated Disaccharides: A Combined Computational and NMR Study. Bioorg. Chem. 2024, 147, 107388.10.1016/j.bioorg.2024.107388. PubMed DOI

Bork N.; Du L.; Reiman H.; Kurtén T.; Kjaergaard H. G. Benchmarking Ab Initio Binding Energies of Hydrogen-Bonded Molecular Clusters Based on FTIR Spectroscopy. J. Phys. Chem. A 2014, 118 (28), 5316–5322. 10.1021/jp5037537. PubMed DOI

Oswald S.; Suhm M. A. Soft Experimental Constraints for Soft Interactions: A Spectroscopic Benchmark Data Set for Weak and Strong Hydrogen Bonds. Phys. Chem. Chem. Phys. 2019, 21 (35), 18799–18810. 10.1039/C9CP03651B. PubMed DOI

Sergeyev I.; Moyna G. Determination of the Three-Dimensional Structure of Oligosaccharides in the Solid State from Experimental 13C NMR Data and Ab Initio Chemical Shift Surfaces. Carbohydr. Res. 2005, 340 (6), 1165–1174. 10.1016/j.carres.2005.02.022. PubMed DOI

Swalina C. W.; Zauhar R. J.; DeGrazia M. J.; Moyna G. Derivation of 13C Chemical Shift Surfaces for the Anomeric Carbons of Oligosaccharides and Glycopeptides Using Ab Initio Methodology. J. Biomol. NMR 2001, 21 (1), 49–61. 10.1023/A:1011928919734. PubMed DOI

Krivdin L. B. Computational NMR of Carbohydrates: Theoretical Background, Applications, and Perspectives. Molecules 2021, 26 (9), 2450.10.3390/molecules26092450. PubMed DOI PMC

Dračínský M.; Bouř P. Computational Analysis of Solvent Effects in NMR Spectroscopy. J. Chem. Theory Comput. 2010, 6 (1), 288–299. 10.1021/ct900498b. PubMed DOI

Poppe L.; Stuike-Prill R.; Meyer B.; van Halbeek H. The Solution Conformation of Sialyl-α(2→6)-Lactose Studied by Modern NMR Techniques and Monte Carlo Simulations. J. Biomol. NMR 1992, 2 (2), 109–136. 10.1007/BF01875524. PubMed DOI

Charisiadis P.; Kontogianni V. G.; Tsiafoulis C. G.; Tzakos A. G.; Siskos M.; Gerothanassis I. P. 1H-NMR as a Structural and Analytical Tool of Intra- and Intermolecular Hydrogen Bonds of Phenol-Containing Natural Products and Model Compounds. Molecules 2014, 19 (9), 13643–13682. 10.3390/molecules190913643. PubMed DOI PMC

Klein R. A. Electron Density Topological Analysis of Hydrogen Bonding in Glucopyranose and Hydrated Glucopyranose. J. Am. Chem. Soc. 2002, 124 (46), 13931–13937. 10.1021/ja0206947. PubMed DOI

Klein R. A. Hydrogen bonding in diols and binary diol−water systems investigated using DFT methods. II. Calculated infrared OH-stretch frequencies, force constants, and NMR chemical shifts correlate with hydrogen bond geometry and electron density topology. A reevaluation of geometrical criteria for hydrogen bonding. J. Comput. Chem. 2003, 24 (9), 1120–1131. 10.1002/jcc.10256. PubMed DOI

Oh K.-I.; Rajesh K.; Stanton J. F.; Baiz C. R. Quantifying Hydrogen-Bond Populations in Dimethyl Sulfoxide/Water Mixtures. Angew. Chem., Int. Ed. 2017, 56 (38), 11375–11379. 10.1002/anie.201704162. PubMed DOI

Linclau B.; Graton J.; Le Questel J.-Y.. 8 - Influence of Fluorination on Alcohol Hydrogen-Bond Donating Properties. In Progress in Fluorine Science, Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals; Haufe G., Leroux F. R., Eds.; Progress in Fluorine Science; Academic Press, 2019; pp 301−32410.1016/B978-0-12-812733-9.00008-8. DOI

Graton J.; Compain G.; Besseau F.; Bogdan E.; Watts J. M.; Mtashobya L.; Wang Z.; Weymouth-Wilson A.; Galland N.; Le Questel J.-Y.; Linclau B. Influence of Alcohol β-Fluorination on Hydrogen-Bond Acidity of Conformationally Flexible Substrates. Chem.—Eur. J. 2017, 23 (12), 2811–2819. 10.1002/chem.201604940. PubMed DOI

Pietruś W.; Kurczab R.; Kafel R.; Machalska E.; Kalinowska-Tłuścik J.; Hogendorf A.; Żylewski M.; Baranska M.; Bojarski A. J. How Can Fluorine Directly and Indirectly Affect the Hydrogen Bonding in Molecular Systems? − A Case Study for Monofluoroanilines. Spectrochim. Acta, Part A 2021, 252, 119536.10.1016/j.saa.2021.119536. PubMed DOI

Linclau B.; Wang Z.; Compain G.; Paumelle V.; Fontenelle C. Q.; Wells N.; Weymouth-Wilson A. Investigating the Influence of (Deoxy)Fluorination on the Lipophilicity of Non-UV-Active Fluorinated Alkanols and Carbohydrates by a New Log P Determination Method. Angew. Chem., Int. Ed. 2016, 55 (2), 674–678. 10.1002/anie.201509460. PubMed DOI PMC

Wang D.; Ámundadóttir M. L.; van Gunsteren W. F.; Hünenberger P. H. Intramolecular Hydrogen-Bonding in Aqueous Carbohydrates as a Cause or Consequence of Conformational Preferences: A Molecular Dynamics Study of Cellobiose Stereoisomers. Eur. Biophys. J. 2013, 42 (7), 521–537. 10.1007/s00249-013-0901-5. PubMed DOI

Mohamadi F.; Richards N. G. J.; Guida W. C.; Liskamp R.; Lipton M.; Caufield C.; Chang G.; Hendrickson T.; Still W. C. Macromodel—an Integrated Software System for Modeling Organic and Bioorganic Molecules Using Molecular Mechanics. J. Comput. Chem. 1990, 11 (4), 440–467. 10.1002/jcc.540110405. DOI

Watts K. S.; Dalal P.; Tebben A. J.; Cheney D. L.; Shelley J. C. Macrocycle Conformational Sampling with MacroModel. J. Chem. Inf. Model. 2014, 54 (10), 2680–2696. 10.1021/ci5001696. PubMed DOI

Allinger N. L.; Yuh Y. H.; Lii J. H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 1989, 111 (23), 8551–8566. 10.1021/ja00205a001. DOI

Onufriev A. V.; Case D. A. Generalized Born Implicit Solvent Models for Biomolecules. Annu. Rev. Biophys. 2019, 48, 275–296. 10.1146/annurev-biophys-052118-115325. PubMed DOI PMC

Polak E.; Ribiere G. Note sur la convergence de méthodes de directions conjuguées. ESAIM: Math. Modell. Numer. Anal. 1969, 3 (R1), 35–43. 10.1051/m2an/196903R100351. DOI

Eaton J. W.; Bateman D.; Hauberg S.; Wehbring R.. GNU Octave Version 8.3.0 Manual: A High-Level Interactive Language for Numerical Computations; 2023. https://www.gnu.org/software/octave/doc/v8.3.0/ (accessed 2024-04-10).

Mittal A.; Malhotra D.; Jain P.; Kalia A.; Shunmugaperumal T. Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method. AAPS PharmSciTech 2016, 17 (4), 988–994. 10.1208/s12249-015-0432-8. PubMed DOI

Sheldrick G. M.SHELXL-2017/1, Program for the Solution of Crystal Structures; University of Göttingen, Germany.

Cooper R. I.; Thompson A. L.; Watkin D. J. CRYSTALS Enhancements: Dealing with Hydrogen Atoms in Refinement. J. Appl. Crystallogr. 2010, 43 (5), 1100–1107. 10.1107/S0021889810025598. DOI

Farrugia L. J. ORTEP-3 for Windows - a Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30 (5), 565–565. 10.1107/S0021889897003117. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D., Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, Revision B.01; Gaussian, Inc., Wallingford, CT, 2016.

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37 (2), 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Becke A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652. 10.1063/1.464913. DOI

Vosko S. H.; Wilk L.; Nusair M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58 (8), 1200–1211. 10.1139/p80-159. DOI

Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98 (45), 11623–11627. 10.1021/j100096a001. DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI

Grimme S.; Hansen A.; Brandenburg J. G.; Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116 (9), 5105–5154. 10.1021/acs.chemrev.5b00533. PubMed DOI

Barone V.; Cossi M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102 (11), 1995–2001. 10.1021/jp9716997. DOI

Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24 (6), 669–681. 10.1002/jcc.10189. PubMed DOI

London F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J. Phys. Radium 1937, 8 (10), 397–409. 10.1051/jphysrad:01937008010039700. DOI

McWeeny R. Perturbation Theory for the Fock-Dirac Density Matrix. Phys. Rev. 1962, 126 (3), 1028–1034. 10.1103/PhysRev.126.1028. DOI

Ditchfield R. Self-Consistent Perturbation Theory of Diamagnetism. Mol. Phys. 1974, 27 (4), 789–807. 10.1080/00268977400100711. DOI

Wolinski K.; Hinton J. F.; Pulay P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112 (23), 8251–8260. 10.1021/ja00179a005. DOI

Cheeseman J. R.; Trucks G. W.; Keith T. A.; Frisch M. J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys. 1996, 104 (14), 5497–5509. 10.1063/1.471789. DOI

Deng W.; Cheeseman J. R.; Frisch M. J. Calculation of Nuclear Spin−Spin Coupling Constants of Molecules with First and Second Row Atoms in Study of Basis Set Dependence. J. Chem. Theory Comput. 2006, 2 (4), 1028–1037. 10.1021/ct600110u. PubMed DOI

Lodewyk M. W.; Siebert M. R.; Tantillo D. J. Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 2012, 112 (3), 1839–1862. 10.1021/cr200106v. PubMed DOI

Bally T.; Rablen P. R. Quantum-Chemical Simulation of 1H NMR Spectra. 2. Comparison of DFT-Based Procedures for Computing Proton−Proton Coupling Constants in Organic Molecules. J. Org. Chem. 2011, 76 (12), 4818–4830. 10.1021/jo200513q. PubMed DOI

Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297–3305. 10.1039/b508541a. PubMed DOI

TURBOMOLE 6.3, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989−2007; TURBOMOLE GmbH, 2011.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...