Influence of Selective Deoxyfluorination on the Molecular Structure of Type-2 N-Acetyllactosamine
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
39178339
PubMed Central
PMC11382267
DOI
10.1021/acs.joc.4c00879
Knihovny.cz E-zdroje
- MeSH
- aminocukry * chemie MeSH
- halogenace MeSH
- krystalografie rentgenová MeSH
- kvantová teorie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- aminocukry * MeSH
- N-acetyllactosamine MeSH Prohlížeč
N-Acetyllactosamine is a common saccharide motif found in various biologically active glycans. This motif usually works as a backbone for additional modifications and thus significantly influences glycan conformational behavior and biological activity. In this work, we have investigated the type-2 N-acetyllactosamine scaffold using the complete series of its monodeoxyfluorinated analogs. These glycomimetics have been studied by molecular mechanics, quantum mechanics, X-ray crystallography, and various NMR techniques, which have provided a comprehensive and complete insight into the role of individual hydroxyl groups in the conformational behavior and lipophilicity of N-acetyllactosamine.
Centro de Investigaciones Biológicas Margarita Salas Ramiro de Maeztu 9 28040 Madrid Spain
CIBER de Enfermedades Respiratorias Avda Monforte de Lemos 3 5 28029 Madrid Spain
Ikerbasque Basque Foundation for Science Plaza Euskadi 2 48013 Bilbao Bizkaia Spain
Zobrazit více v PubMed
Glycans (G02645 ) in IUPAC Compendium of Chemical Terminology, 3rd ed. International Union of Pure and Applied Chemistry, 2006. Online version 3.0.1, 201910.1351/goldbook.G02645. DOI
Buffone A. Jr.; Weaver V. M. Don’t Sugarcoat It: How Glycocalyx Composition Influences Cancer Progression. J. Cell Biol. 2020, 219 (1), e20191007010.1083/jcb.201910070. PubMed DOI PMC
Ambrosi M.; Cameron N. R.; Davis B. G. Lectins: Tools for the Molecular Understanding of the Glycocode. Org. Biomol. Chem. 2005, 3 (9), 1593–1608. 10.1039/b414350g. PubMed DOI
Leusmann S.; Ménová P.; Shanin E.; Titz A.; Rademacher C. Glycomimetics for the Inhibition and Modulation of Lectins. Chem. Soc. Rev. 2023, 52 (11), 3663–3740. 10.1039/D2CS00954D. PubMed DOI PMC
Tamburrini A.; Colombo C.; Bernardi A. Design and Synthesis of Glycomimetics: Recent Advances. Med. Res. Rev. 2020, 40 (2), 495–531. 10.1002/med.21625. PubMed DOI
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics 2019, 4 (3), 53.10.3390/biomimetics4030053. PubMed DOI PMC
Angulo J.; Zimmer J.; Imberty A.; Prestegard J. H.. Structural Biology of Glycan Recognition. In Essentials of Glycobiology, 4th ed.; Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Mohnen D., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 2022; pp 403−41810.1101/glycobiology.4e.30. DOI
Verteramo M. L.; Stenström O.; Ignjatović M. M.; Caldararu O.; Olsson M. A.; Manzoni F.; Leffler H.; Oksanen E.; Logan D. T.; Nilsson U. J.; Ryde U.; Akke M. Interplay between Conformational Entropy and Solvation Entropy in Protein−Ligand Binding. J. Am. Chem. Soc. 2019, 141 (5), 2012–2026. 10.1021/jacs.8b11099. PubMed DOI
Hevey R. Strategies for the Development of Glycomimetic Drug Candidates. Pharmaceuticals 2019, 12 (2), 55.10.3390/ph12020055. PubMed DOI PMC
Yu Y.; Delbianco M. Conformational Studies of Oligosaccharides. Chem.—Eur. J. 2020, 26 (44), 9814–9825. 10.1002/chem.202001370. PubMed DOI PMC
Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS Au 2024, 4 (1), 20–39. 10.1021/jacsau.3c00639. PubMed DOI PMC
Dal Colle M. C. S.; Fittolani G.; Delbianco M. Synthetic Approaches to Break the Chemical Shift Degeneracy of Glycans. ChemBioChem. 2022, 23 (24), e20220041610.1002/cbic.202200416. PubMed DOI PMC
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chem.—Eur. J. 2021, 27, 2240–2253. 10.1002/chem.202003135. PubMed DOI
Linclau B.; Ardá A.; Reichardt N.-C.; Sollogoub M.; Unione L.; Vincent S. P.; Jiménez-Barbero J. Fluorinated Carbohydrates as Chemical Probes for Molecular Recognition Studies. Current Status and Perspectives. Chem. Soc. Rev. 2020, 49 (12), 3863–3888. 10.1039/C9CS00099B. PubMed DOI
St-Gelais J.; Côté É.; Lainé D.; Johnson P. A.; Giguère D. Addressing the Structural Complexity of Fluorinated Glucose Analogues: Insight into Lipophilicities and Solvation Effects. Chem.—Eur. J. 2020, 26 (59), 13499–13506. 10.1002/chem.202002825. PubMed DOI
Hamala V.; Červenková Št’astná L.; Kurfiřt M.; Cuřínová P.; Dračínský M.; Karban J. Synthesis of Multiply Fluorinated N-Acetyl-D-Glucosamine and D-Galactosamine Analogs via the Corresponding Deoxyfluorinated Glucosazide and Galactosazide Phenyl Thioglycosides. Beilstein J. Org. Chem. 2021, 17 (1), 1086–1095. 10.3762/bjoc.17.85. PubMed DOI PMC
Fernández P.; Jiménez-Barbero J. The Conformation of Some Halodeoxy Analogues of Methyl β-Lactoside in D2O and DMSO-D6 Solutions. J. Carbohydr. Chem. 1994, 13 (2), 207–233. 10.1080/07328309408009189. DOI
Bock K.; Duus J. Ø. A Conformational Study of Hydroxymethyl Groups in Carbohydrates Investigated by 1H NMR Spectroscopy. J. Carbohydr. Chem. 1994, 13 (4), 513–543. 10.1080/07328309408011662. DOI
Denavit V.; Lainé D.; Bouzriba C.; Shanina E.; Gillon É.; Fortin S.; Rademacher C.; Imberty A.; Giguère D. Stereoselective Synthesis of Fluorinated Galactopyranosides as Potential Molecular Probes for Galactophilic Proteins: Assessment of Monofluorogalactoside−LecA Interactions. Chem.—Eur. J. 2019, 25, 4478–4490. 10.1002/chem.201806197. PubMed DOI
Stanley P.; Moremen K. W.; Lewis N. E.; Taniguchi N.; Aebi M.. N-Glycans. In Essentials of Glycobiology; Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Mohnen D., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 202210.1101/glycobiology.4e.9. DOI
Brockhausen I.; Wandall H. H.; Hagen K. G. T.; Stanley P.. O-GalNAc Glycans. In Essentials of Glycobiology; Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Mohnen D., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 202210.1101/glycobiology.4e.10. DOI
Magalhães A.; Ismail M. N.; Reis C. A. Sweet Receptors Mediate the Adhesion of the Gastric Pathogen Helicobacter Pylori: Glycoproteomic Strategies. Expert Rev. Proteomics 2010, 7 (3), 307–310. 10.1586/epr.10.18. PubMed DOI
Mitchell E.; Houles C.; Sudakevitz D.; Wimmerova M.; Gautier C.; Pérez S.; Wu A. M.; Gilboa-Garber N.; Imberty A. Structural Basis for Oligosaccharide-Mediated Adhesion of Pseudomonas Aeruginosa in the Lungs of Cystic Fibrosis Patients. Nat. Struct. Mol. Biol. 2002, 9 (12), 918–921. 10.1038/nsb865. PubMed DOI
Kerr C. L.; Hanna W. F.; Shaper J. H.; Wright W. W. Lewis X-Containing Glycans Are Specific and Potent Competitive Inhibitors of the Binding of ZP3 to Complementary Sites on Capacitated, Acrosome-Intact Mouse Sperm1. Biol. Reprod. 2004, 71 (3), 770–777. 10.1095/biolreprod.103.023812. PubMed DOI
Bojar D.; Meche L.; Meng G.; Eng W.; Smith D. F.; Cummings R. D.; Mahal L. K. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem. Biol. 2022, 17 (11), 2993–3012. 10.1021/acschembio.1c00689. PubMed DOI PMC
Cummings R. D.; Liu F.-T.; Rabinovich G. A.; Stowell S. R.; Vasta G. R.. Galectins. In Essentials of Glycobiology; Varki A., Cummings R. D., Esko J. D., Stanley P., Hart G. W., Aebi M., Mohnen D., Kinoshita T., Packer N. H., Prestegard J. H., Schnaar R. L., Seeberger P. H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 2022.10.1101/glycobiology.4e.36. DOI
Arnold J. W.; Whittington H. D.; Dagher S. F.; Roach J.; Azcarate-Peril M. A.; Bruno-Barcena J. M. Safety and Modulatory Effects of Humanized Galacto-Oligosaccharides on the Gut Microbiome. Front. Nutr. 2021, 8, 640100.10.3389/fnut.2021.640100. PubMed DOI PMC
Varki A.; Cummings R. D.; Aebi M.; Packer N. H.; Seeberger P. H.; Esko J. D.; Stanley P.; Hart G.; Darvill A.; Kinoshita T.; Prestegard J. J.; Schnaar R. L.; Freeze H. H.; Marth J. D.; Bertozzi C. R.; Etzler M. E.; Frank M.; Vliegenthart J. F.; Lütteke T.; Perez S.; Bolton E.; Rudd P.; Paulson J.; Kanehisa M.; Toukach P.; Aoki-Kinoshita K. F.; Dell A.; Narimatsu H.; York W.; Taniguchi N.; Kornfeld S. Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology 2015, 25 (12), 1323–1324. 10.1093/glycob/cwv091. PubMed DOI PMC
Longchambon F.; Ohanessian J.; Gillier-Pandraud H.; Duchet D.; Jacquinet J.-C.; Sinaÿ P. Structure de la N-acétyllactosamine (acétamido-2 désoxy-2 O-β-d-galactopyrannosyl-4a-d-Glucopyrannose). Acta Cryst. Section B 1981, 37 (3), 601–607. 10.1107/S0567740881003658. DOI
García-Aparicio V.; Sollogoub M.; Blériot Y.; Colliou V.; André S.; Asensio J. L.; Cañada F. J.; Gabius H.-J.; Sinaÿ P.; Jiménez-Barbero J. The Conformation of the C-Glycosyl Analogue of N-Acetyl-Lactosamine in the Free State and Bound to a Toxic Plant Agglutinin and Human Adhesion/Growth-Regulatory Galectin-1. Carbohydr. Res. 2007, 342 (12), 1918–1928. 10.1016/j.carres.2007.02.034. PubMed DOI
Cocinero E. J.; Gamblin D. P.; Davis B. G.; Simons J. P. The Building Blocks of Cellulose: The Intrinsic Conformational Structures of Cellobiose, Its Epimer, Lactose, and Their Singly Hydrated Complexes. J. Am. Chem. Soc. 2009, 131 (31), 11117–11123. 10.1021/ja903322w. PubMed DOI
Rivera-Sagredo A.; Jiménez-Barbero J.; Martín-Lomas M. N.m.r. Studies of the Conformation of Analogues of Methyl β-Lactoside in Methyl Sulfoxide-D6. Carbohydr. Res. 1991, 221 (1), 37–47. 10.1016/0008-6215(91)80047-Q. PubMed DOI
Erdélyi M.; d’Auvergne E.; Navarro-Vázquez A.; Leonov A.; Griesinger C. Dynamics of the Glycosidic Bond: Conformational Space of Lactose. Chem.—Eur. J. 2011, 17, 9368–9376. 10.1002/chem.201100854. PubMed DOI
Schnupf U.; Momany F. A. Rapidly Calculated DFT Relaxed Iso-Potential ϕ/ψ Maps: β-Cellobiose. Cellulose 2011, 18 (4), 859–887. 10.1007/s10570-011-9537-8. DOI
Larsson E. A.; Staaf M.; Söderman P.; Höög C.; Widmalm G. Determination of the Conformational Flexibility of Methyl α-Cellobioside in Solution by NMR Spectroscopy and Molecular Simulations. J. Phys. Chem. A 2004, 108 (18), 3932–3937. 10.1021/jp049714c. DOI
Tvaroška I. Theoretical Studies on the Conformation of Saccharides. VIII. Solvent Effect on the Stability of β-Cellobiose Conformers. Biopolymers 1984, 23 (10), 1951–1960. 10.1002/bip.360231011. DOI
Yui T.; Kobayashi H.; Kitamura S.; Imada K. Conformational Analysis of Chitobiose and Chitosan. Biopolymers 1994, 34 (2), 203–208. 10.1002/bip.360340206. DOI
Mo F.; Jensen L. H. The crystal structure of a β-(1→ 4) linked disaccharide, α-N,N’-diacetylchitobiose monohydrate. Acta Cryst. B 1978, 34 (5), 1562–1569. 10.1107/S0567740878006081. DOI
Fettke A.; Peikow D.; Peter M. G.; Kleinpeter E. Synthesis and Conformational Analysis of Glycomimetic Analogs of Thiochitobiose. Tetrahedron 2009, 65 (22), 4356–4366. 10.1016/j.tet.2009.03.067. DOI
Mo F. On the Conformational Variability of the N-Acetylglucosamine β-(1→4) Linked Dimer. Crystal and Molecular Structure of Beta-N,N’-Diacetylchitobiose Trihydrate. Acta Chem. Scand. A 1979, 33, 207–218. 10.3891/acta.chem.scand.33a-0207. DOI
Martín-Pastor M.; Canales A.; Corzana F.; Asensio J. L.; Jiménez-Barbero J. Limited Flexibility of Lactose Detected from Residual Dipolar Couplings Using Molecular Dynamics Simulations and Steric Alignment Methods. J. Am. Chem. Soc. 2005, 127 (10), 3589–3595. 10.1021/ja043445m. PubMed DOI
Zhang W.; Turney T.; Meredith R.; Pan Q.; Sernau L.; Wang X.; Hu X.; Woods R. J.; Carmichael I.; Serianni A. S. Conformational Populations of β-(1→4) O-Glycosidic Linkages Using Redundant NMR J-Couplings and Circular Statistics. J. Phys. Chem. B 2017, 121 (14), 3042–3058. 10.1021/acs.jpcb.7b02252. PubMed DOI PMC
Bernet B.; Vasella A. Intra- and Intermolecular H-Bonds of Alcohols in DMSO, 1H-NMR Analysis of Inter-Residue H-Bonds in Selected Oligosaccharides: Cellobiose, Lactose, N,N′-Diacetylchitobiose, Maltose, Sucrose, Agarose, and Hyaluronates. Helv. Chim. Acta 2000, 83 (9), 2055–2071. 10.1002/1522-2675(20000906)83:9<2055::AID-HLCA2055>3.0.CO;2-C. DOI
Rönnols J.; Engström O.; Schnupf U.; Säwén E.; Brady J. W.; Widmalm G. Inter-Residual Hydrogen Bonding in Carbohydrates Unraveled by NMR Spectroscopy and Molecular Dynamics Simulations. ChemBioChem. 2019, 20 (19), 2519–2528. 10.1002/cbic.201900301. PubMed DOI
Kurfiřt M.; Dračínský M.; Červenková Št’astná L.; Cuřínová P.; Hamala V.; Hovorková M.; Bojarová P.; Karban J. Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as 19F NMR Probes to Study Carbohydrate-Galectin Interactions. Chem.—Eur. J. 2021, 27 (51), 13040–13051. 10.1002/chem.202101752. PubMed DOI
Klamt A.; Eckert F. COSMO-RS: A Novel and Efficient Method for the a Priori Prediction of Thermophysical Data of Liquids. Fluid Phase Equilib. 2000, 172 (1), 43–72. 10.1016/S0378-3812(00)00357-5. DOI
Bannan C. C.; Burley K. H.; Chiu M.; Shirts M. R.; Gilson M. K.; Mobley D. L. Blind Prediction of Cyclohexane-Water Distribution Coefficients from the SAMPL5 Challenge. J. Comput. Aided Mol. Des. 2016, 30 (11), 927–944. 10.1007/s10822-016-9954-8. PubMed DOI PMC
Vidal P.; Jiménez-Barbero J.; Espinosa J. F. Conformational Flexibility around the Gal-β-(1 → 3)-Glc Linkage: Experimental Evidence for the Existence of the Anti-ψ Conformation in Aqueous Solution. Carbohydr. Res. 2016, 433, 36–40. 10.1016/j.carres.2016.06.009. PubMed DOI
O’Dell W. B.; Baker D. C.; McLain S. E. Structural Evidence for Inter-Residue Hydrogen Bonding Observed for Cellobiose in Aqueous Solution. PLoS One 2012, 7 (10), e4531110.1371/journal.pone.0045311. PubMed DOI PMC
Fowler P.; Bernet B.; Vasella A. A 1H-NMR Spectroscopic Investigation of the Conformation of the Acetamido Group in Some Derivatives of N-Acetyl-d-Allosamine and -d-Glucosamine. Helv. Chim. Acta 1996, 79 (1), 269–287. 10.1002/hlca.19960790127. DOI
Grindley T. B.Structure and Conformation of Carbohydrates. In Glycoscience: Chemistry and Chemical Biology; Fraser-Reid B. O., Tatsuta K., Thiem J., Eds.; Springer: Berlin, Heidelberg, 2008; pp 3−5510.1007/978-3-540-30429-6_1. DOI
Battistel M. D.; Azurmendi H. F.; Yu B.; Freedberg D. I. NMR of Glycans: Shedding New Light on Old Problems. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 79, 48–68. 10.1016/j.pnmrs.2014.01.001. PubMed DOI
Csuk R.; Glänzer B. I. N.M.R.. Spectroscopy of Fluorinated Monosaccharides. In Adv. Carbohydr. Chem. Biochem.; Tipson R. S., Horton D., Eds.; Academic Press, 1988; Vol. 46, pp 73−17710.1016/S0065-2318(08)60165-1. DOI
Michalik M.; Hein M.; Frank M. NMR Spectra of Fluorinated Carbohydrates. Carbohydr. Res. 2000, 327 (1), 185–218. 10.1016/S0008-6215(99)00323-7. PubMed DOI
Chaloupecká E.; Kurfiřt M.; Červenková Št’astná L.; Karban J.; Dračínský M. Exploring Long-Range Fluorine−Carbon J-Coupling for Conformational Analysis of Deoxyfluorinated Disaccharides: A Combined Computational and NMR Study. Bioorg. Chem. 2024, 147, 107388.10.1016/j.bioorg.2024.107388. PubMed DOI
Bork N.; Du L.; Reiman H.; Kurtén T.; Kjaergaard H. G. Benchmarking Ab Initio Binding Energies of Hydrogen-Bonded Molecular Clusters Based on FTIR Spectroscopy. J. Phys. Chem. A 2014, 118 (28), 5316–5322. 10.1021/jp5037537. PubMed DOI
Oswald S.; Suhm M. A. Soft Experimental Constraints for Soft Interactions: A Spectroscopic Benchmark Data Set for Weak and Strong Hydrogen Bonds. Phys. Chem. Chem. Phys. 2019, 21 (35), 18799–18810. 10.1039/C9CP03651B. PubMed DOI
Sergeyev I.; Moyna G. Determination of the Three-Dimensional Structure of Oligosaccharides in the Solid State from Experimental 13C NMR Data and Ab Initio Chemical Shift Surfaces. Carbohydr. Res. 2005, 340 (6), 1165–1174. 10.1016/j.carres.2005.02.022. PubMed DOI
Swalina C. W.; Zauhar R. J.; DeGrazia M. J.; Moyna G. Derivation of 13C Chemical Shift Surfaces for the Anomeric Carbons of Oligosaccharides and Glycopeptides Using Ab Initio Methodology. J. Biomol. NMR 2001, 21 (1), 49–61. 10.1023/A:1011928919734. PubMed DOI
Krivdin L. B. Computational NMR of Carbohydrates: Theoretical Background, Applications, and Perspectives. Molecules 2021, 26 (9), 2450.10.3390/molecules26092450. PubMed DOI PMC
Dračínský M.; Bouř P. Computational Analysis of Solvent Effects in NMR Spectroscopy. J. Chem. Theory Comput. 2010, 6 (1), 288–299. 10.1021/ct900498b. PubMed DOI
Poppe L.; Stuike-Prill R.; Meyer B.; van Halbeek H. The Solution Conformation of Sialyl-α(2→6)-Lactose Studied by Modern NMR Techniques and Monte Carlo Simulations. J. Biomol. NMR 1992, 2 (2), 109–136. 10.1007/BF01875524. PubMed DOI
Charisiadis P.; Kontogianni V. G.; Tsiafoulis C. G.; Tzakos A. G.; Siskos M.; Gerothanassis I. P. 1H-NMR as a Structural and Analytical Tool of Intra- and Intermolecular Hydrogen Bonds of Phenol-Containing Natural Products and Model Compounds. Molecules 2014, 19 (9), 13643–13682. 10.3390/molecules190913643. PubMed DOI PMC
Klein R. A. Electron Density Topological Analysis of Hydrogen Bonding in Glucopyranose and Hydrated Glucopyranose. J. Am. Chem. Soc. 2002, 124 (46), 13931–13937. 10.1021/ja0206947. PubMed DOI
Klein R. A. Hydrogen bonding in diols and binary diol−water systems investigated using DFT methods. II. Calculated infrared OH-stretch frequencies, force constants, and NMR chemical shifts correlate with hydrogen bond geometry and electron density topology. A reevaluation of geometrical criteria for hydrogen bonding. J. Comput. Chem. 2003, 24 (9), 1120–1131. 10.1002/jcc.10256. PubMed DOI
Oh K.-I.; Rajesh K.; Stanton J. F.; Baiz C. R. Quantifying Hydrogen-Bond Populations in Dimethyl Sulfoxide/Water Mixtures. Angew. Chem., Int. Ed. 2017, 56 (38), 11375–11379. 10.1002/anie.201704162. PubMed DOI
Linclau B.; Graton J.; Le Questel J.-Y.. 8 - Influence of Fluorination on Alcohol Hydrogen-Bond Donating Properties. In Progress in Fluorine Science, Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals; Haufe G., Leroux F. R., Eds.; Progress in Fluorine Science; Academic Press, 2019; pp 301−32410.1016/B978-0-12-812733-9.00008-8. DOI
Graton J.; Compain G.; Besseau F.; Bogdan E.; Watts J. M.; Mtashobya L.; Wang Z.; Weymouth-Wilson A.; Galland N.; Le Questel J.-Y.; Linclau B. Influence of Alcohol β-Fluorination on Hydrogen-Bond Acidity of Conformationally Flexible Substrates. Chem.—Eur. J. 2017, 23 (12), 2811–2819. 10.1002/chem.201604940. PubMed DOI
Pietruś W.; Kurczab R.; Kafel R.; Machalska E.; Kalinowska-Tłuścik J.; Hogendorf A.; Żylewski M.; Baranska M.; Bojarski A. J. How Can Fluorine Directly and Indirectly Affect the Hydrogen Bonding in Molecular Systems? − A Case Study for Monofluoroanilines. Spectrochim. Acta, Part A 2021, 252, 119536.10.1016/j.saa.2021.119536. PubMed DOI
Linclau B.; Wang Z.; Compain G.; Paumelle V.; Fontenelle C. Q.; Wells N.; Weymouth-Wilson A. Investigating the Influence of (Deoxy)Fluorination on the Lipophilicity of Non-UV-Active Fluorinated Alkanols and Carbohydrates by a New Log P Determination Method. Angew. Chem., Int. Ed. 2016, 55 (2), 674–678. 10.1002/anie.201509460. PubMed DOI PMC
Wang D.; Ámundadóttir M. L.; van Gunsteren W. F.; Hünenberger P. H. Intramolecular Hydrogen-Bonding in Aqueous Carbohydrates as a Cause or Consequence of Conformational Preferences: A Molecular Dynamics Study of Cellobiose Stereoisomers. Eur. Biophys. J. 2013, 42 (7), 521–537. 10.1007/s00249-013-0901-5. PubMed DOI
Mohamadi F.; Richards N. G. J.; Guida W. C.; Liskamp R.; Lipton M.; Caufield C.; Chang G.; Hendrickson T.; Still W. C. Macromodel—an Integrated Software System for Modeling Organic and Bioorganic Molecules Using Molecular Mechanics. J. Comput. Chem. 1990, 11 (4), 440–467. 10.1002/jcc.540110405. DOI
Watts K. S.; Dalal P.; Tebben A. J.; Cheney D. L.; Shelley J. C. Macrocycle Conformational Sampling with MacroModel. J. Chem. Inf. Model. 2014, 54 (10), 2680–2696. 10.1021/ci5001696. PubMed DOI
Allinger N. L.; Yuh Y. H.; Lii J. H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 1989, 111 (23), 8551–8566. 10.1021/ja00205a001. DOI
Onufriev A. V.; Case D. A. Generalized Born Implicit Solvent Models for Biomolecules. Annu. Rev. Biophys. 2019, 48, 275–296. 10.1146/annurev-biophys-052118-115325. PubMed DOI PMC
Polak E.; Ribiere G. Note sur la convergence de méthodes de directions conjuguées. ESAIM: Math. Modell. Numer. Anal. 1969, 3 (R1), 35–43. 10.1051/m2an/196903R100351. DOI
Eaton J. W.; Bateman D.; Hauberg S.; Wehbring R.. GNU Octave Version 8.3.0 Manual: A High-Level Interactive Language for Numerical Computations; 2023. https://www.gnu.org/software/octave/doc/v8.3.0/ (accessed 2024-04-10).
Mittal A.; Malhotra D.; Jain P.; Kalia A.; Shunmugaperumal T. Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method. AAPS PharmSciTech 2016, 17 (4), 988–994. 10.1208/s12249-015-0432-8. PubMed DOI
Sheldrick G. M.SHELXL-2017/1, Program for the Solution of Crystal Structures; University of Göttingen, Germany.
Cooper R. I.; Thompson A. L.; Watkin D. J. CRYSTALS Enhancements: Dealing with Hydrogen Atoms in Refinement. J. Appl. Crystallogr. 2010, 43 (5), 1100–1107. 10.1107/S0021889810025598. DOI
Farrugia L. J. ORTEP-3 for Windows - a Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30 (5), 565–565. 10.1107/S0021889897003117. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D., Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, Revision B.01; Gaussian, Inc., Wallingford, CT, 2016.
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37 (2), 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Becke A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652. 10.1063/1.464913. DOI
Vosko S. H.; Wilk L.; Nusair M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58 (8), 1200–1211. 10.1139/p80-159. DOI
Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98 (45), 11623–11627. 10.1021/j100096a001. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI
Grimme S.; Hansen A.; Brandenburg J. G.; Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116 (9), 5105–5154. 10.1021/acs.chemrev.5b00533. PubMed DOI
Barone V.; Cossi M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102 (11), 1995–2001. 10.1021/jp9716997. DOI
Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24 (6), 669–681. 10.1002/jcc.10189. PubMed DOI
London F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J. Phys. Radium 1937, 8 (10), 397–409. 10.1051/jphysrad:01937008010039700. DOI
McWeeny R. Perturbation Theory for the Fock-Dirac Density Matrix. Phys. Rev. 1962, 126 (3), 1028–1034. 10.1103/PhysRev.126.1028. DOI
Ditchfield R. Self-Consistent Perturbation Theory of Diamagnetism. Mol. Phys. 1974, 27 (4), 789–807. 10.1080/00268977400100711. DOI
Wolinski K.; Hinton J. F.; Pulay P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112 (23), 8251–8260. 10.1021/ja00179a005. DOI
Cheeseman J. R.; Trucks G. W.; Keith T. A.; Frisch M. J. A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors. J. Chem. Phys. 1996, 104 (14), 5497–5509. 10.1063/1.471789. DOI
Deng W.; Cheeseman J. R.; Frisch M. J. Calculation of Nuclear Spin−Spin Coupling Constants of Molecules with First and Second Row Atoms in Study of Basis Set Dependence. J. Chem. Theory Comput. 2006, 2 (4), 1028–1037. 10.1021/ct600110u. PubMed DOI
Lodewyk M. W.; Siebert M. R.; Tantillo D. J. Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 2012, 112 (3), 1839–1862. 10.1021/cr200106v. PubMed DOI
Bally T.; Rablen P. R. Quantum-Chemical Simulation of 1H NMR Spectra. 2. Comparison of DFT-Based Procedures for Computing Proton−Proton Coupling Constants in Organic Molecules. J. Org. Chem. 2011, 76 (12), 4818–4830. 10.1021/jo200513q. PubMed DOI
Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297–3305. 10.1039/b508541a. PubMed DOI
TURBOMOLE 6.3, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989−2007; TURBOMOLE GmbH, 2011.