Preparation and Characterization of Electrosprayed Aerogel/Polytetrafluoroethylene Microporous Materials
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
35012069
PubMed Central
PMC8747099
DOI
10.3390/polym14010048
PII: polym14010048
Knihovny.cz E-resources
- Keywords
- aerogel, electrospray, hydrophobicity, polytetrafluoroethylene, surface roughness, thermal conductivity,
- Publication type
- Journal Article MeSH
This paper presents the preparation of aerogel/polytetrafluoroethylene (PTFE) microporous materials via needleless electrospray technique, by using an aqueous dispersion of polytetrafluoroethylene as the basic spinning liquid. Different contents of aerogel powders were applied to the spinning liquid for electrospraying to investigate the effect on the structural characteristics and various properties of the materials. Cross-section, surface morphology, and particle size distribution of the electrosprayed materials were examined. Surface roughness, hydrophobicity, and thermal conductivity were evaluated and discussed. The results showed that the electrosprayed aerogel/PTFE layers were compact and disordered stacking structures composed of spherical particles with a rough surface. As the aerogel content increased, the electrosprayed materials demonstrated increased surface roughness and improved surface hydrophobicity with a contact angle up to 147.88°. In addition, the successful achievement of thermal conductivity as low as 0.024 (W m-1 K-1) indicated a superior ability of the prepared aerogel/PTFE composites to prevent heat transfer. This study contributes to the field of development of aerogel/PTFE composites via electrospray technique, providing enhanced final performance for potential use as thermal and moisture barriers in textiles or electronic devices.
See more in PubMed
Ebnesajjad S. Expanded PTFE Applications Handbook: Technology, Manufacturing and Applications. William Andrew Publishing; Oxford, UK: 2016.
Burkarter E., Saul C.K., Thomazi F., Cruz N.C., Roman L.S., Schreiner W.H. Superhydrophobic electrosprayed PTFE. Surf. Coat. Technol. 2007;202:194–198. doi: 10.1016/j.surfcoat.2007.05.012. DOI
Gardiner J. Fluoropolymers: Origin, production, and industrial and commercial applications. Aust. J. Chem. 2015;68:13–22. doi: 10.1071/CH14165. DOI
Dhanumalayan E., Joshi G.M. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review. Adv. Compos. Hybrid. Mater. 2018;1:247–268. doi: 10.1007/s42114-018-0023-8. DOI
Thomas P. The use of fluoropolymers for non-stick cooking utensils. Surf. Coat. Int. 1998;81:604–609. doi: 10.1007/BF02693055. DOI
Yuan X., Yang X. A study on friction and wear properties of PTFE coatings under vacuum conditions. Wear. 2010;269:291–297. doi: 10.1016/j.wear.2010.04.014. DOI
Price D.M., Jarratt M. Thermal conductivity of PTFE and PTFE composites. Thermochim. Acta. 2002;392:231–236. doi: 10.1016/S0040-6031(02)00105-3. DOI
Cai W.Z., Tu S.T., Tao G.L. Thermal conductivity of PTFE composites with three-dimensional randomly distributed fillers. J. Thermoplast. Compos. Mater. 2005;18:241–253. doi: 10.1177/0892705705046900. DOI
Cai X., Jiang Z., Gao T., Yue K., Zhang X. Thermal property improvement of polytetrafluoroethylene nanocomposites with graphene nanoplatelets. RSC Adv. 2018;8:11367–11374. doi: 10.1039/C8RA01047A. PubMed DOI PMC
Huang S., Chen T., Chen H. Study on the composites of two sized silica filled in PTFE. J. Reinf. Plast. Comp. 2006;25:1053–1058. doi: 10.1177/0731684406064999. DOI
Chen Y., Lin H., Lee Y. The effects of filler content and size on the properties of PTFE/SiO2 composites. J. Poly Res. 2003;10:247–258. doi: 10.1023/B:JPOL.0000004620.71900.16. DOI
Valdés-Solís T., Fuertes A.B. High-surface area inorganic compounds prepared by nano-casting techniques. Mater. Res. Bull. 2006;41:2187–2197. doi: 10.1016/j.materresbull.2006.04.018. DOI
Thapliyal P., Singh K. Aerogels as promising thermal insulating materials: An overview. J. Mater. 2014;2014:1–10. doi: 10.1155/2014/127049. DOI
Fricke J., Tillotson T. Aerogels: Production, characterization, and applications. Thin Solid Films. 1997;297:212–223. doi: 10.1016/S0040-6090(96)09441-2. DOI
Pierre A.C., Pajonk G.M. Chemistry of aerogels and their applications. Chem. Rev. 2002;102:4243–4266. doi: 10.1021/cr0101306. PubMed DOI
Xiong X., Venkataraman M., Jašíková D., Yang T., Mishra R., Militký J., Petrů M. An experimental evaluation of convective heat transfer in multi-layered fibrous materials composed by different middle layer structures. J. Ind. Text. 2021;51:362–379. doi: 10.1177/1528083719878845. DOI
Xiong X., Yang T., Mishra R., Kanai H., Militky J. Thermal and compression characteristics of aerogel-encapsulated textiles. J. Ind. Text. 2017;7:1998–2013. doi: 10.1177/1528083717716167. DOI
Venkataraman M., Mishra R., Militky J., Xiong X., Marek J., Yao J., Zhu G. Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym. Adv. Technol. 2018;29:2583–2592. doi: 10.1002/pat.4369. DOI
Huang D., Shen Y., Yuan Q., Wang C., Shi L. Preparation and characterization of silica aerogel/polytetrafluoroethylene composites. Mater. Res. Express. 2019;6:115021. doi: 10.1088/2053-1591/ab454e. DOI
Murali K.P., Rajesh S., Prakash O., Kulkarni A.R., Ratheesh R. Preparation and properties of silica filled PTFE flexible laminates for microwave circuit applications. Compos. Part. A Appl. Sci. Manuf. 2009;40:1179–1185. doi: 10.1016/j.compositesa.2009.05.007. DOI
Wei X., Nie Z., Luo Q., Li B., Chen B., Simmons K., Wang W. Nanoporous polytetrafluoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane. Adv. Energy Mater. 2013;3:1215–1220. doi: 10.1002/aenm.201201112. DOI
Guo X., Bai C., Shan J., Lei W., Ding R., Zhang Y., Yang H. Fabrication and characterization of MSQ aerogel coating on ePTFE thin films for cable sheaths. Molecules. 2019;24:1246. doi: 10.3390/molecules24071246. PubMed DOI PMC
Huang A., Liu F., Cui Z., Wang H., Song X., Geng L., Wang H., Peng X. Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering. Compos. Sci. Technol. 2021;214:108980. doi: 10.1016/j.compscitech.2021.108980. DOI
Jirsak O., Sanetrnik F., Lukas D., Kotek V., Martinova L., Chaloupek J. A Method of Nanofibres Production from a Polymer Solution using Electrostatic Spinning and a Device for Carrying Out the Method. EP 1,673,493. European Patent. 2004 September 8;
Brown N.A., Zhu Y., German G.K., Yong X., Chiarot P.R. Electrospray deposit structure of nanoparticle suspensions. J. Electrostat. 2017;90:67–73. doi: 10.1016/j.elstat.2017.09.004. DOI
Costa L.M.M., Bretas R.E.S., Gregorio R. Effect of solution concentration on the electrospray/electrospinning transition and on the crystalline phase of PVDF. Mater. Sci. Appl. 2010;1:247–252. doi: 10.4236/msa.2010.14036. DOI
Venkataraman M., Yang K., Xiong X., Militky J., Kremenakova D., Zhu G., Yao J., Wang Y., Zhang G. Preparation of electrosprayed, microporous particle filled Layers. Polymers. 2020;12:1352. doi: 10.3390/polym12061352. PubMed DOI PMC
Dolezal I., Hes L., Bal K. A non-destructive single plate method for measurement of thermal resistance of polymer sheets and fabrics. Int. J. Occup. Saf. Ergon. 2019;25:562–567. doi: 10.1080/10803548.2018.1477247. PubMed DOI
Lenggoro I.W., Xia B., Okuyama K. Sizing of colloidal nanoparticles by electrospray and differential mobility analyzer methods. Langmuir. 2002;18:4584–4591. doi: 10.1021/la015667t. PubMed DOI
Gomez A., Tang K. Charge and fission of droplets in electrostatic sprays. Phys. Fluids. 1994;6:404–414. doi: 10.1063/1.868037. DOI
Castillo J.L., Martin S., Rodriguez-Perez D., Higuera F.J., Garcia-Ybarra P.L. Nanostructured porous coatings via electrospray atomization and deposition of nanoparticle suspensions. J. Aerosol. Sci. 2018;125:148–163. doi: 10.1016/j.jaerosci.2018.03.004. DOI
Bernett M.K., Zisman W.A. Relation of wettability by aqueous solutions to the surface constitution of low-energy solids. J. Phys. Chem. 1959;63:1241. doi: 10.1021/j150578a006. DOI
Wloch J., Terzyk A.P., Wiśniewski M., Kowalczyk P. Nanoscale water contact angle on PTFE surfaces characterized by the MD-AFM imaging. Langmuir. 2018;34:4526–4534. doi: 10.1021/acs.langmuir.8b00257. PubMed DOI
Shi H., Cui J., Shen H., Wu H. Preparation of silica aerogel and its adsorption performance to organic molecule. Adv. Mater. Sci. Eng. 2014;1:1–8. doi: 10.1155/2014/850420. DOI
Altay P., Atakan R., Özcan G. Silica aerogel application to polyester fabric for outdoor clothing. Fibers Polym. 2021;22:1025–1032. doi: 10.1007/s12221-021-0420-4. DOI
Maghsoudi K., Motahari S. Mechanical, thermal, and hydrophobic properties of silica aerogel–epoxy composites. J. Appl. Polym. Sci. 2018;135:45706. doi: 10.1002/app.45706. DOI
Chen H., Zhang Y., Zhong T., Wu Z., Zhan X., Ye J. Thermal insulation and hydrophobization of wood impregnated with silica aerogel powder. J. Wood Sci. 2020;66:1–11. doi: 10.1186/s10086-020-01927-7. DOI
Caps R., Fricke J. Aerogels for Thermal Insulation. In: Aegerter M.A., Mennig M., editors. Sol-Gel Technologies for Glass Producers and Users. Springer; Boston, MA, USA: 2004.