Superabsorbent Polymer Seed Coating Reduces Leaching of Fungicide but Does Not Alter Their Effectiveness in Suppressing Pathogen Infestation

. 2021 Dec 26 ; 14 (1) : . [epub] 20211226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35012099

Grantová podpora
ITMS 304011Y185 European Regional Development Fund
RPVV 37 Ministry of Agriculture and Rural Development of the Slovak Republic
QK21010064 Ministry of Agriculture of the Czech Republic

Superabsorbent polymers (SAPs) applied to soil have been recognized as water reservoirs that allow plants to cope with periods of drought. Their application as a seed coat makes water available directly to the seeds during their germination and early growth phase, but on the other hand, it can affect the efficiency of plant protection substances used in seed dressing. In our experiments, we evaluated the effect of seed coating with SAP on fungicide leaching and changes in their effectiveness in suppressing Fusarium culmorum infestation. Leaching of fungicide from wheat seeds coated with SAP after fungicide dressing, as measured by the inhibition test of mycelium growth under in vitro conditions, was reduced by 14.2-15.8% compared to seeds without SAP coating. Germination of maize seeds and growth of juvenile plants in artificially infected soil did not differ significantly between seeds dressed with fungicide alone and seeds treated with SAP and fungicide. In addition, plants from the seeds coated with SAP alone grew significantly better compared to untreated seeds. Real-time PCR also confirmed this trend by measuring the amount of pathogen DNA in plant tissue. Winter wheat was less tolerant to F. culmorum infection and without fungicide dressing, the seeds were unable to germinate under strong pathogen attack. In the case of milder infection, similar results were observed as in the case of maize seeds.

Zobrazit více v PubMed

Finch-Savage W.E., Bassel G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016;67:567–591. doi: 10.1093/jxb/erv490. PubMed DOI

Lamichhane J.R., You M.P., Laudinot V., Barbetti M.J., Aubertot J.-N. Revisiting sustainability of fungicide seed treatments for field crops. Plant Dis. 2020;104:610–623. doi: 10.1094/PDIS-06-19-1157-FE. PubMed DOI

Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017;8:1147. doi: 10.3389/fpls.2017.01147. PubMed DOI PMC

Sehgal A., Sita K., Siddique K.H.M., Kumar R., Bhogireddy S., Varshney R.K., HanumanthaRao B., Nair R.M., Prasad P.V.V., Nayyar H. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 2018;9:1705. doi: 10.3389/fpls.2018.01705. PubMed DOI PMC

Arora N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019;2:95–96. doi: 10.1007/s42398-019-00078-w. DOI

Rosero A., Granda L., Berdugo-Cely J.A., Šamajová O., Šamaj J., Cerkal R. A dual strategy of breeding for drought tolerance and introducing drought-tolerant, underutilized crops into production systems to enhance their resilience to water deficiency. Plants. 2020;9:1263. doi: 10.3390/plants9101263. PubMed DOI PMC

Ali A., Erenstein O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017;16:183–194. doi: 10.1016/j.crm.2016.12.001. DOI

Tripathi A. Superabsorbent polymers: Artificial mini water reservoirs in soil for agriculture applications. Acta Sci. Agric. 2018;2:1.

Ekebafe L.O., Ogbeifun D.E., Okieimen F.E. Polymer applications in agriculture. Biokemistri. 2011;23:81–89.

Peteu S.F., Oancea F., Sicuia O.A., Constantinescu F., Dinu S. Responsive polymers for crop protection. Polymers. 2010;2:229–251. doi: 10.3390/polym2030229. DOI

Milani P., França D., Balieiro A.G., Faez R. Polymers and its applications in agriculture. Polímeros. 2017;27:256–266. doi: 10.1590/0104-1428.09316. DOI

Akhter J., Mahmood K., Malik K., Mardan A., Ahmad M., Iqbal M.M. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant Soil Environ. 2004;50:463–469. doi: 10.17221/4059-PSE. DOI

Yazdani F., Allahdadi I., Akbari G.A. Impact of Superabsorbent Polymer on Yield and Growth Analysis of Soybean (Glycine max L.) under Drought Stress Condition. Pak. J. Biol. Sci. 2008;10:4190–4196. doi: 10.3923/pjbs.2007.4190.4196. PubMed DOI

Montesano F.F., Parente A., Santamaria P., Sannino A., Serio F. Biodegradable superabsorbent hydrogel increaseswater retention properties of growing media and plant growth. Agric. Agric. Sci. Proc. 2015;4:451–458. doi: 10.1016/j.aaspro.2015.03.052. DOI

Gunes A., Kıtır N., Turan M., Elkoca E., Yildirim E., Avci N. Evaluation of effects of water-saving superabsorbent polymer on corn (Zea mays L.) yield and phosphorus fertilizer efficiency. Turk. J. Agric. For. 2016;40:365–378. doi: 10.3906/tar-1511-126. DOI

Abrisham E.S., Jafari M., Tavili A., Rabii A., Zare Chahoki M.A., Zare S., Egan T., Yazdanshenas H., Ghasemian D., Tahmoures M. Effects of a super absorbent polymer on soil properties and plant growth for use in land reclamation. Arid Land Res. Manag. 2018;32:407–420. doi: 10.1080/15324982.2018.1506526. DOI

Nagaraj Gokavi R., Mote K., Mukharib D.S., Manjunath A.N., Raghuramulu Y. Performance of hydrogel on seed germination and growth of young coffee seedlings in nursery. J. Pharmacogn. Phytochem. 2018;7:1364–1366.

Guan Y., Cui H., Ma W., Zheng Y., Tian Y., Hu J. An enhanced drought-tolerant method using SA-loaded PAMPS polymer materials applied on tobacco pelleted seeds. Sci. World J. 2014;2014:752658. doi: 10.1155/2014/752658. PubMed DOI PMC

Su L., Li J., Xue H., Wang X. Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought. J. Zhejiang Univ.-Sci. B. 2017;18:696–706. doi: 10.1631/jzus.B1600350. PubMed DOI PMC

Keawkham T., Siri B., Hynes R.K. Effect of polymer seed coating and seed dressing with pesticides on seed quality and storability of hybrid cucumber. Aust. J. Crop Sci. 2014;8:1415–1420. doi: 10.3316/informit.752502360402611. DOI

Pathak V., Ambrose R.P.K. Starch-based biodegradable hydrogel as seed coating for corn to improve early growth under water shortage. J. Appl. Polym. Sci. 2020;137:48523. doi: 10.1002/app.48523. DOI

Jarecki W., Wietecha J. Effect of seed coating on the yield of soybean Glycine max (L.) Merr. Plant Soil Environ. 2021;67:468–473. doi: 10.17221/246/2021-PSE. DOI

Pačuta V., Rašovský M., Michalska-Klimczak B., Wyszyňski Z. Impact of Superabsorbent Polymers and Variety on Yield, Quality and Physiological Parameters of the Sugar Beet (Beta vulgaris prov. Altissima Doell) Plants. 2021;10:757. doi: 10.3390/plants10040757. PubMed DOI PMC

Ludwig E.J., Nunes U.R., Prestes O.D., Fagundes L.K., Fernandes T.S., Saibt N. Polymer coating in soybean seed treatment and their relation to leaching of chemicals. Rev. Ambient. Agua. 2020;15:2602. doi: 10.4136/ambi-agua.2602. DOI

Fagundes L.K., Nunes U.R., Prestes O.D., Fernandes T.S., Ludwig E.J., Saibt N. Rice seed treatment and recoating with polymers: Physiological quality and retention of chemical products. Rev. Caatinga. 2017;30:920–927. doi: 10.1590/1983-21252017v30n412rc. DOI

Park W.-P., Chang K.-M., Hyun H.-N., Boo K.-H., Koo B.-J. Sorption and leaching characteristics of pesticides in volcanic ash soils of Jeju Island, Korea. Appl. Biol. Chem. 2020;63:71. doi: 10.1186/s13765-020-00555-5. DOI

Roy A., Singh S., Bajpai J., Bajpai A. Controlled pesticide release from biodegradable polymers. Open Chem. 2014;12:453–469. doi: 10.2478/s11532-013-0405-2. DOI

Kumar J., Nisar K., Arun Kumar M.B., Valia S., Shakil N.A., Prasad R., Parman B. Development of polymeric seed coats for seed quality enhancement of soybean (Glycine max) Indian J. Agric. Sci. 2007;77:738–743.

Vijaya Mahantesh B.N., Rai P.K., Srivastava D.K., Bara B.M., Kumar R. Effects of polymer seed coating, fungicide seed treatment and storage duration on seedling characteristics of cotton (Gossypium hirsutum) seeds. J. Pharmacogn. Phytochem. 2017;6:534–536.

Manoharapaladagu P.V., Rai P.K., Kumar R., Srivastava D.K. Effects of polymer seed coating, fungicide seed treatment and packaging materials on seed quality of chilli (Capsicum annuum L.) during storage. J. Pharmacogn. Phytochem. 2017;6:324–327.

Bleša D., Matušinský P., Sedmíková R., Baláž M. The potential of Rhizoctonia-like fungi for the biological protection of cereals against fungal pathogens. Plants. 2021;10:349. doi: 10.3390/plants10020349. PubMed DOI PMC

Scherm B., Balmas V., Spanu F., Pani G., Delogu G., Pasquali M., Migheli Q. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013;14:323–341. doi: 10.1111/mpp.12011. PubMed DOI PMC

Wang Q., Gottwald S. Wheat root-dip inoculation with Fusarium graminearum and assessment of root rot disease severity. Bio-protocol. 2017;7:2189. doi: 10.21769/BioProtoc.2189. PubMed DOI PMC

Koch E., Zink P., Pfeiffer T., von Galen A., Linkies A., Drechsel J., Birr T. Artificial inoculation methods for testing microorganisms as control agents of seed- and soil-borne Fusarium-seedling blight of maize. J. Plant Dis. Prot. 2020;127:883–893. doi: 10.1007/s41348-020-00350-w. DOI

Antalová Z., Bleša D., Martinek P., Matušinsky P. Transcriptional analysis of wheat seedlings inoculated with Fusarium culmorum under continual exposure to disease defence inductors. PLoS ONE. 2020;15:0224413. doi: 10.1371/journal.pone.0224413. PubMed DOI PMC

Qi D., Zou L., Zhou D., Chen Y., Gao Z., Feng R., Zhang M., Li K., Xie J., Wang W. Taxonomy and broad-spectrum antifungal activity of streptomyces sp. Sca3-4 isolated from rhizosphere soil of Opuntia stricta. Front. Microbiol. 2019;10:1390. doi: 10.3389/fmicb.2019.01390. PubMed DOI PMC

Leišová L., Kučera L., Chrpová J., Sýkorová S., Šíp V., Ovesná J. Quantification of Fusarium culmorum in wheat and barley tissues using Real-Time PCR in comparison with DON content. J. Phytopathol. 2006;154:603–611. doi: 10.1111/j.1439-0434.2006.01154.x. DOI

Dehkordi D.K. The Effects of Superabsorbent Polymers on Soils and Plants. Pertanika J. Trop. Agric. Sci. 2016;39:267–298.

Afzal I., Javed T., Amirkhani M., Taylor A.G. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture. 2020;10:526. doi: 10.3390/agriculture10110526. DOI

Avelar S.A.G., de Sousa F.V., Fiss G., Baudet L., Peske S.T. The use of film coating on the performance of treated corn seed. Rev. Bras. Sementes. 2012;34:186–192. doi: 10.1590/S0101-31222012000200001. DOI

Elshafie H.S., Camele I. Applications of Absorbent Polymers for Sustainable Plant Protection and Crop Yield. Sustainability. 2021;13:3253. doi: 10.3390/su13063253. DOI

Rocha I., Ma Y., Souza-Alonso P., Vosátka M., Freitas H., Oliveira R.S. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front. Plant Sci. 2019;10:1357. doi: 10.3389/fpls.2019.01357. PubMed DOI PMC

Kimmelshue C., Goggi A.S., Cademartiri R. The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. Nebraskensis in maize seeds. Sci. Rep. 2019;9:17950. doi: 10.1038/s41598-019-54068-3. PubMed DOI PMC

Xiong B., Loss R.D., Shields D., Pawlik T., Hochreiter R., Zydney A.L., Kumar M. Polyacrylamide degradation and its implications in environmental systems. npj Clean Water. 2018;1:17. doi: 10.1038/s41545-018-0016-8. DOI

Nyyssölä A., Ahlgren J. Microbial degradation of polyacrylamide and the deamination product polyacrylate. Int. Biodeterior. Biodegr. 2019;139:24–33. doi: 10.1016/j.ibiod.2019.02.005. DOI

Joshi S.J., Abed R.M.M. Biodegradation of polyacrylamide and its derivatives. Environ. Process. 2017;4:463–476. doi: 10.1007/s40710-017-0224-0. DOI

Oksińska M.P., Magnucka E.G., Lejcuś K., Pietr S.J. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria. Environ. Sci. Pollut. Res. 2016;23:5969–5977. doi: 10.1007/s11356-016-6130-6. PubMed DOI

Sikder A., Pearce A.K., Parkinson S.J., Napier R., O’Reilly R.K. Recent trends in advanced polymer materials in agriculture related applications. ACS Appl. Polym. Mater. 2021;3:1203–1217. doi: 10.1021/acsapm.0c00982. DOI

Capezza A.J., Newson W.R., Olsson R.T., Hedenqvist M.S., Johansson E. Advances in the use of protein-based materials: Toward sustainable naturally sourced absorbent materials. ACS Sustain. Chem. Eng. 2019;7:4532–4547. doi: 10.1021/acssuschemeng.8b05400. DOI

Capezza A.J., Muneer F., Prade T., Newson W.R., Das O., Lundman M., Olsson R.T., Hedenqvist M.S., Johansson E. Acylation of agricultural protein biomass yields biodegradable superabsorbent plastics. Commun. Chem. 2021;4:52. doi: 10.1038/s42004-021-00491-5. PubMed DOI PMC

Jiménez-Rosado M., Perez-Puyana V., Cordobés F., Romero A., Guerrero A. Development of superabsorbent soy protein—Based bioplastic matrices with incorporated zinc for horticulture. J. Sci. Food Agric. 2019;99:4825–4832. doi: 10.1002/jsfa.9738. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...