Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
31781135
PubMed Central
PMC6852281
DOI
10.3389/fpls.2019.01357
Knihovny.cz E-zdroje
- Klíčová slova
- Trichoderma, arbuscular mycorrhizal fungi, plant growth-promoting bacteria, rhizobia, seed coating, sustainable agriculture,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plant beneficial microbes (PBMs), such as plant growth-promoting bacteria, rhizobia, arbuscular mycorrhizal fungi, and Trichoderma, can reduce the use of agrochemicals and increase plant yield, nutrition, and tolerance to biotic-abiotic stresses. Yet, large-scale applications of PBM have been hampered by the high amounts of inoculum per plant or per cultivation area needed for successful colonization and consequently the economic feasibility. Seed coating, a process that consists in covering seeds with low amounts of exogenous materials, is gaining attention as an efficient delivery system for PBM. Microbial seed coating comprises the use of a binder, in some cases a filler, mixed with inocula, and can be done using simple mixing equipment (e.g., cement mixer) or more specialized/sophisticated apparatus (e.g., fluidized bed). Binders/fillers can be used to extend microbial survival. The most reported types of seed coating are seed dressing, film coating, and pelleting. Tested in more than 50 plant species with seeds of different dimensions, forms, textures, and germination types (e.g., cereals, vegetables, fruits, pulses, and other legumes), seed coating has been studied using various species of plant growth-promoting bacteria, rhizobia, Trichoderma, and to a lesser extent mycorrhizal fungi. Most of the studies regarding PBM applied via seed coating are aimed at promoting crop growth, yield, and crop protection against pathogens. Studies have shown that coating seeds with PBM can assist crops in improving seedling establishment and germination or achieving high yields and food quality, under reduced chemical fertilization. The right combination of biological control agents applied via seed coating can be a powerful tool against a wide number of diseases and pathogens. Less frequently, studies report seed coating being used for adaptation and protection of crops under abiotic stresses. Notwithstanding the promising results, there are still challenges mainly related with the scaling up from the laboratory to the field and proper formulation, including efficient microbial combinations and coating materials that can result in extended shelf-life of both seeds and coated PBM. These limitations need to be addressed and overcome in order to allow a wider use of seed coating as a cost-effective delivery method for PBM in sustainable agricultural systems.
Zobrazit více v PubMed
Abdul Latef A. A. H. A., Chaoxing H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic. 127, 228–233. 10.1016/j.scienta.2010.09.020. DOI
Accinelli C., Abbas H. K., Little N. S., Kotowicz J. K., Mencarelli M., Shier W. T. (2016). A liquid bioplastic formulation for film coating of agronomic seeds. Crop Prot. 89, 123–128. 10.1016/j.cropro.2016.07.010. DOI
Accinelli C., Abbas H. K., Little N. S., Kotowicz J. K., Shier W. T. (2018. a). Biological control of aflatoxin production in corn using non-aflatoxigenic Aspergillus flavus administered as a bioplastic-based seed coating. Crop Prot. 107, 87–92. 10.1016/j.cropro.2018.02.004. DOI
Accinelli C., Abbas H. K., Shier W. T. (2018. b). A bioplastic-based seed coating improves seedling growth and reduces production of coated seed dust. J. Crop Improv. 32, 318–330. 10.1080/15427528.2018.1425792. DOI
Adams A. F. R., Lowther W. L. (1970). Lime, inoculation, and seed coating in the establishment of oversown clovers. New Zeal. J. Agr. Res. 13, 242–251. 10.1080/00288233.1970.10425397. DOI
Adholeya A., Tiwari P., Singh R., (2005). “Large-scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies,” in In vitro culture of mycorrhizas. Eds. Declerck S., Fortin J. A., Strullu D. G. (Berlin: Springer; ), 315–338. 10.1007/3-540-27331-X_17. DOI
Ahmed A. Q., Javed N., Khan S. A., Abbas H., Kamran M. (2016. a). Efficacy of rhizospheric organism Rhizobium leguminosarum against Meloidogyne incognita in soybean. Pak. J. Agric. Sci. 53, 377–381. 10.21162/PAKJAS/16.1659. DOI
Ahmed M. F., Zayan A. S., Rashed M. S. (2016. b). Evaluation of seed coating with certain bio-agents against damping-off and root rot diseases of fennel under organic farming system. J. Phytopathol. Pst. Mgmt. 3, 11–23.
Alizadeh O., Zare M., Nasr A. H. (2011). Evaluation effect of mycorrhiza inoculate under drought stress condition on grain yield of sorghum (Sorghum bicolor). Adv. Environ. Biol. 5, 2361–2364.
Amutha M. (2017). Establishment of beauveria bassiana (Balsamo) vuillemin as an endophyte in cotton. Int. J. Curr. Microbiol. App. Sci. 6, 2506–2513. 10.20546/ijcmas.2017.606.298. DOI
Anis M., Zaki M. J., Dawar S. (2012). Development of a na-alginate-based bioformulation and its use in the management of charcoal rot of sunflower (Helianthus annuus L.). Pak. J. Bot 44, 1167–1170.
Anjaiah V., Thakur R. P., Koedam N. (2006). Evaluation of bacteria and trichoderma for biocontrol of pre-harvest seed infection by aspergillus flavus in groundnut. Biocontrol Sci. Technol. 16, 431–436. 10.1080/09583150500532337. DOI
Awika J. M. (2011). “Major cereal grains production and use around the world,” in Advances in cereal science: implications to food processing and health promotion. Eds. Awika M., Piironen V., Bean S., (Washington: American Chemical Society; ), 1–13. 10.1021/bk-2011-1089.ch001 DOI
Babychan M., Simon S. (2017). Efficacy of trichoderma spp. against fusarium oxysporum f. sp. lycopersici.(FOL) infecting pre-and post-seedling of tomato. J. Pharmacogn. Phytochem. 6, 616–619.
Bakker P. A., Pieterse C. M., Van Loon L. C. (2007). Induced systemic resistance by fluorescent pseudomonas spp. Phytopathology 97, 239–243. 10.1094/PHYTO-97-2-0239. PubMed DOI
Bashan Y. (1986). Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl. Environ. Microbiol. 51 (5), 1089–1098. PubMed PMC
Bashan Y., Bashan L. E., Prabhu S. R., Hernandez J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33. 10.1007/s11104-013-1956-x. DOI
Ben Rebah F., Prevost D., Yezza A., Tyagi R. (2007). Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review. Bioresour. Technol. 98, 3535–3546. 10.1016/j.biortech.2006.11.066. PubMed DOI
Berninger T., Mitter B., Preininger C. (2016). The smaller, the better? the size effect of alginate beads carrying plant growth-promoting bacteria for seed coating. J. Microencapsul. 33, 127–136. 10.3109/02652048.2015.1134690. PubMed DOI
Birhane E., Sterck F. J., Fetene M., Bongers F., Kuyper T. W. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169, 895–904. 10.1007/s00442-012-2258-3. PubMed DOI PMC
Brockwell J., Phillips L. J. (1970). Studies on seed pelleting as an aid to legume seed inoculation. 3. Survival of rhizobium applied to seed sown into hot, dry soil. Aust. J. Exp. Agr. 10, 739–744. 10.1071/EA9700739. DOI
Bücking H. e A., and Kafle, (2015). Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5, 587–612. 10.3390/agronomy5040587. DOI
Bulgarelli D., Schlaeppi K., Spaepen S., van Themaat E. V. L., Schulze-Lefert P. (2013). Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838. 10.1146/annurev-arplant-050312-120106. PubMed DOI
Celebi S. Z., Demir S., Celebi R., Durak E. D., Yilmaz I. H. (2010). The effect of arbuscular mycorrhizal fungi (AMF) applications on the silage maize (Zea mays L.) yield in different irrigation regimes. Eur. J. Soil. Biol. 46, 302–305. 10.1016/j.ejsobi.2010.06.002. DOI
Cely M. V., de Oliveira A. G., de Freitas V. F., de Luca M. B., Barazetti A. R., dos Santos I. M., et al. (2016). Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Front. Microbiol. 7, 720. 10.3389/fmicb.2016.00720. PubMed DOI PMC
Cheong D., Jansen M., Peters R. (2013). Shared harvests: agriculture, trade and employment - international labour office and united nations conference on trade development - Geneva: ILO and UNCTAD.
Choi E. S., Sukweenadhi J., Kim Y. J., Jung K. H., Koh S. C., Hoang V. A., et al. (2016). The effects of rice seed dressing with paenibacillus yonginensis and silicon on crop development on South Korea’s reclaimed tidal land. Field Crops Res. 188, 121–132. 10.1016/j.fcr.2016.01.005. DOI
Chun S. C., Chandrasekaran M. (2018). Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 9, 2525. 10.3389/fmicb.2018.02525. PubMed DOI PMC
Colla G., Rouphael Y., Bonini P., Cardarelli M. (2015. a). Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int. J. Plant Prod. 9, 171–190.
Colla G., Rouphael Y., Di Mattia E., El-Nakhel C., Cardarelli M. (2015. b). Co-inoculation of glomus intraradices and trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. . Agric. 95, 1706–1715. 10.1002/jsfa.6875. PubMed DOI
Compant S., Duffy B., Nowak J., Clément C., Barka E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. J. Appl. Environ. Microbiol. 71, 4951–4959. 10.1128/AEM.71.9.4951-4959.2005. PubMed DOI PMC
Contreras-Cornejo H. A., Macías-Rodríguez L., del-Val E., Larsen J. (2016). Ecological functions of trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol. Ecol. 92, fiw036. 10.1093/femsec/fiw036. PubMed DOI
Dal Cortivo C., Barion G., Visioli G., Mattarozzi M., Mosca G., Vamerali T. (2017). Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: assessment of plant-microbe interactions by ESEM. Agric. Ecosyst. Environ. 247, 396–408. 10.1016/j.agee.2017.07.006. DOI
Dawar S., Hayat S., Anis M., Zaki M. J. (2008). Effect of seed coating material in the efficacy of microbial antagonists for the control of root rot fungi on okra and sunflower. Pak. J. Bot 40, 1269–1278.
De Souza R., Ambrosini A., Passaglia L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38, 404–419. 10.1590/S1415-475738420150053. PubMed DOI PMC
Deaker R., Roughley R. J., Kennedy I. R. (2004). Legume seed inoculation technology - a review. Soil Biol. Biochem. 36, 1275–1288. 10.1016/j.soilbio.2004.04.009. DOI
Deaker R., Hartley E., Gemell G. (2012). Conditions affecting shelf-life of inoculated legume seed. Agriculture 2, 38–51. 10.3390/agriculture2010038. DOI
Diniz K. A., Oliveira J. A., Guimarães R. M., Carvalho M. L. M. D., Machado J. D. C. (2006). Incorporação de microrganismos, aminoácidos, micronutrientes e reguladores de crescimento em sementes de alface pela técnica de peliculização. Rev. Bras. Sementes 28, 37–43. 10.1590/S0101-31222006000300006. DOI
Diniz K. A., Silva P. D. A., Oliveira J. A., Evangelista J. R. E. (2009). Sweet pepper seed responses to inoculation with microorganisms and coating with micronutrients, aminoacids and plant growth regulators. Sci. Agr. 66, 293–297. 10.1590/S0103-90162009000300002. DOI
Domaradzki M., Kaniewska J., Weiner W. (2012). The application of agglomerative granulation for seeds. Part 2. pelleting of organic seeds. Chemik 66, 473–478.
Egberongbe H. O., Akintokun A. K., Babalola O. O., Bankole M. O. (2010). The effect of glomus mosseae and trichoderma harzianum on proximate analysis of soybean (Glycine max (L.) Merrill.) seed grown in sterilized and unsterilized soil. J. Agric. Ext. Rural Dev. 2, 54–58.
Ehsanfar S., Modarres-Sanavy S. A. (2005). Crop protection by seed coating. Commun. Agric. Appl. Biol. Sci. 70, 225–229. PubMed
Ehteshamul-Haque S., Sultana V., Ara J., Athar M. (2007). Cultivar response against root-infecting fungi and efficacy of Pseudomonas aeruginosa in controlling soybean root rot. Plant Biosyst. 141 (1), 51–55. 10.1080/11263500601153529. DOI
Elzein A., Heller A., Ndambi B., De Mol M., Kroschel J., Cadisch G. (2010). Cytological investigations on colonization of sorghum roots by the mycoherbicide fusarium oxysporum f. sp. strigae and its implications for striga control using a seed treatment delivery system. Biol Control 53, 249–257. 10.1016/j.biocontrol.2010.02.002. DOI
Elzein A., Kroschel J., Leth V. (2006). Seed treatment technology: an attractive delivery system for controlling root parasitic weed Striga with mycoherbicide. Biocontrol Sci. Techn. 16, 3–26. 10.1080/09583150500187926. DOI
European Commission (2019). The common agricultural policy: separating fact from fiction. Retrieved from: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en#title, accessed June 2019.
Evelin H., Kapoor R., Giri B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann. Bot. 104, 1263–1280. 10.1093/aob/mcp251. PubMed DOI PMC
FAO (2018). Agricultural development economics. smallholder family farms. Retrieved from http://www.fao.org/economic/esa/esa-activities/smallholders/en/ Accessed September 2018.
FAOSTAT (2016). Food and agriculture organization of the united nations. FAOSTAT online database. Retrieved from http://www.fao.org/faostat/en/#data/EL/visualize, http://www.fao.org/faostat/en/#data/QV, accessed July 2018.
Fatima Z., Zia M., Chaudhary M. F. (2006). Effect of rhizobium strains and phosphorus on growth of soybean glycine max and survival of rhizobium and P solubilizing bacteria. Pak. J. Bot. 38, 459.
Gąstoł M., Domagała-Świątkiewicz I., Bijak M. (2016). The effect of mycorrhizal inoculation and phosphorus application on the growth and mineral nutrient status of apple seedlings. J. Plant Nutr. 39, 288–299. 10.1080/01904167.2015.1109114. DOI
Gault R. R., Brockwell J. (1980). Studies of seed pelleting as an aid to legume inoculation. 5. effects of incorporation of molybdenum compounds in the seed pellet on inoculant survival, seedling nodulation and plant growth of lucerne and subterranean clover. Aust. J. Exp. Agr. 20, 63–71. 10.1071/EA9800063. DOI
Geetha V. V., Balamurugan P. (2011). Organic seed pelleting in mustard. Res. J. seed Sci. 4, 174–180. 10.3923/rjss.2011.174.180. DOI
Georgakopoulos D. G., Fiddaman P., Leifert C., Malathrakis N. E. (2002). Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J. Appl. Microbiol. Biochem. 92, 1078–1086. PubMed
Glick B. R. (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117. 10.1139/m95-015. DOI
Glick B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 1–15. 10.6064/2012/963401. PubMed DOI PMC
Gliessman S. R. (2005). “Agroecology and agroecosystems” in the earthscan reader in sustainable agriculture. Ed. Pretty J. (London: Earthscan; ) 104–114.
Głodowska M., Husk B., Schwinghamer T., Smith D. (2016). Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agron. Sustain. Dev. 36, 1–21. 10.1007/s13593-016-0356-z. DOI
Głodowska M., Schwinghamer T., Husk B., Smith D. (2017). Biochar based inoculants improve soybean growth and nodulation. Agric. Sci. 8, 1048–1064. 10.4236/as.2017.89076. DOI
Habibzadeh Y., Pirzad A., Zardashti M. R., Jalilian J., Eini O. (2013). Effects of arbuscular mycorrhizal fungi on seed and protein yield under water-deficit stress in mung bean. Agron. J. 105, 79–84. 10.2134/agronj2012.0069. DOI
Hadar Y., Harman G. E., Taylor A. G. (1984). Evaluation of trichoderma koningii and T. harzianum from New York soils for biological control of seed rot caused by Pythium spp. Phytopathology 74, 106–110. 10.1094/Phyto-74-106. DOI
Haikal N. Z. (2008). Control of rhizoctonia solani in soybean (Glycin max L.) by seed-coating with trichoderma viride and Gliocladium virens spores. J. Appl. Biosci. 1, 34–39.
Halmer P. (2000). Commercial seed treatment technology”in seed technology and its biological basis. Black M., Bewley D., editors. England: Sheffield Academic Press, 257–283.
Halmer P. (2008). Seed technology and seed enhancement. Acta Hortic. 771, 17–26. 10.17660/ActaHortic.2008.771.1. DOI
Hameeda B., Harini G., Rupela O. P., Rao J. K., Reddy G. (2010). Biological control of chickpea collar rot by co-inoculation of antagonistic bacteria and compatible Rhizobia. Indian J. Microbiol. 50, 419–424. 10.1007/s12088-011-0083-8. PubMed DOI PMC
Harley J. L., Smith S. E., (1983). Mycorrhizal Symbiosis. Academic Press.
Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2, 43–56. 10.1038/nrmicro797. PubMed DOI
Hartley E. J., Gemell L. G., Deaker R. (2013). Some factors that contribute to poor survival of rhizobia on preinoculated legume seed. Crop Pasture Sci. 63, 858–865. 10.1071/CP12132. DOI
Hartley E., Gemell L. G., Herridge D. F. (2004). Lime pelleting inoculated serradella (Ornithopus spp.) increases nodulation and yield. Soil Biol. Biochem. 36, 1289–1294. 10.1016/j.soilbio.2004.04.010. DOI
Hartz T. K., Caprile J. (1995). Germination of sh2 sweet corn following seed disinfestation, solid-matrix priming, and microbial seed treatment. HortScience 30, 1400–1402. 10.21273/HORTSCI.30.7.1400. DOI
Hayat R., Ali S., Amara U., Khalid R., Ahmed I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Micro. 60, 579–598. 10.1007/s13213-010-0117-1. DOI
Heo K. R., Lee K. Y., Lee S. H., Jung S. J., Lee S. W., Moon B. J. (2008). Control of crisphead lettuce damping-off and bottom rot by seed coating with alginate and Pseudomonas aeruginosa LY-11. Plant. Pathol. J. 24, 67–73. 10.5423/PPJ.2008.24.1.067. DOI
Herrmann L., Lesueur D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Appl. Microbiol. Biotechnol. 97, 8859–8873. 10.1007/s00253-013-5228-8. PubMed DOI
Howell C. R. (1991). Biological control of pythium damping-off of cotton with seed-coating preparations of Gliocladium virens. Phytopathology 81, 738–741. 10.1094/Phyto-81-738. DOI
Jacob S. R., Kumar M. A., Varghese E., Sinha S. N. (2016). Hydrophilic polymer film coat as a micro-container of individual seed facilitates safe storage of tomato seeds. Sci. Hortic. 204, 116–122. 10.1016/j.scienta.2016.04.010. DOI
Jambhulkar P. P., Sharma P., Yadav R., (2016). “Delivery systems for introduction of microbial inoculants in the field,” in Microbial Inoculants in Sustainable Agricultural Productivity (New Delhi: Springer; ), 199–218. 10.1007/978-81-322-2644-4_13. DOI
Jeffries P., Gianinazzi S., Perotto S., Turnau K., Barea J. M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fert. Soils 37, 1–16. 10.1007/s00374-002-0546-5. DOI
Jensen B., Knudsen I. M., Jensen D. F. (2000). Biological seed treatment of cereals with fresh and long-term stored formulations of clonostachys rosea: biocontrol efficacy against fusarium culmorum. Eur. J. Plant Pathol. 106, 233–242. 10.1023/A:1008794626600. DOI
Jensen E. S., Peoples M. B., Boddey R. M., Gresshoff P. M., Hauggaard-Nielsen H., Alves B. J. R., et al. (2012). Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 32, 329–364. 10.1007/s13593-011-0056-7. DOI
Jetiyanon K., Wittaya-Areekul S., Plianbangchang P. (2008). Film coating of seeds with bacillus cereus RS87 spores for early plant growth enhancement. Can. J. Microbiol. 54, 861–867. 1010,1139/W08- 079. PubMed
John R. P., Tyagi R. D., Brar S. K., Surampalli R. Y., Prevost D. (2011). Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31, 211–226. 10.3109/07388551.2010.513327. PubMed DOI
John R. P., Tyagi R. D., Brar S. K., Prévost D. (2010). Development of emulsion from rhizobial fermented starch industry wastewater for application as Medicago sativa seed coat. Eng Life Sci. 10, 248–256. 10.1002/elsc.201000002. DOI
Junges E., Toebe M., Santos R. F. D., Finger G., Muniz M. F. B. (2013). Effect of priming and seed-coating when associated with Bacillus subtilis in maize seeds. Rev. Cien. Agron. 44, 520–526. 10.1590/S1806-66902013000300014. DOI
Kaufman G. (1991). Seed coating: a tool for stand establishment; a stimulus to seed quality. HortTechnology 1, 98–102. 10.21273/HORTTECH.1.1.98. DOI
Kay S. J., Stewart A. (1994). Evaluation of fungal antagonists for control of onion white rot in soil box trials. Plant Pathol. 43, 371–377.
Kaymak H. C. (2010). “Potential of PGPR in agricultural innovations,” in plant growth and health promoting bacteria (Berlin, Heidelberg: Springer; ), 45–79. 10.1007/978-3-642-13612-2_3. DOI
Kazempour M. N. (2004). Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistics bacteria in greenhouse and field conditions. Plant Pathol. J. 3, 88–96. 10.3923/ppj.2004.88.96. DOI
Khan N., Mishra A., Chauhan P. S., Nautiyal C. S. (2011). Induction of Paenibacillus lentimorbus biofilm by sodium alginate and CaCl2 alleviates drought stress in chickpea. Ann. Appl. Biol. 159, 372–386. 10.1111/j.1744-7348.2011.00502.x. DOI
Knight D. J. (2007). Evaluation of rhizobium inoculant formulations for alfalfa yield and N fixation. Can. J. Plant Sci. 87 (2), 267–272. 10.3389/fpls.2017.00141. DOI
Korir H., Mungai N. W., Thuita M., Hamba Y., Masso C. (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 8, 141. PubMed PMC
Kubota A., Hoshiba K., Bordon J. (2008). Effect of fertilizer-N application and seed coating with rhizobial inoculants on soybean yield in eastern Paraguay. Rev. Bras. Cienc. Solo 32 (4), 1627–1633. 10.1590/S0100-06832008000400027. DOI
Kumar P., Desai S., Reddy G., Daniel Amalraj E., Rasul A., Mir Hassan Ahmed S. K. (2015). Seed Bacterization with fluorescent pseudomonas spp. enhances nutrient uptake and growth of cajanus cajan L. Commun. Soil. Sci. Plant Anal. 46 (5), 652–665. 10.1080/00103624.2015.1005219. DOI
Kyei-Boahen S., Slinkard A. E., Walley F. L. (2001). Rhizobial survival and nodulation of chickpea as influenced by fungicide seed treatment. Can. J. Microbiol. 47, 585–589. PubMed
Lally R. D., Galbally P., Moreira A. S., Spink J., Ryan D., Germaine K. J., et al. (2017). Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front. Plant Sci. 8, 2193. 10.3389/fpls.2017.02193. PubMed DOI PMC
Li T., Lin G., Zhang X., Chen Y., Zhang S., Chen B. (2014). Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza 24, 595–602. 10.1007/s00572-014-0578-3. PubMed DOI
Li W., Roberts D. P., Dery P. D., Meyer S. L. F., Lohrke S., Lumsden R. D., et al. (2002). Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot. 21, 129–135. 10.1016/S0261-2194(01)00074-6. DOI
Lifshitz R., Windham M. T., Baker R. (1986). Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology 76, 720–725. 10.1094/Phyto-76-720. DOI
Lindström K., Murwira M., Willems A., Altier N. (2010). The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res. Microbiol. 161, 453–463. 1010,1016/j.resmic. 2010, 05, 005. PubMed
Lopisso D. T., Kühlmann V., Siebold M. (2017). Potential of soil-derived fungal biocontrol agents applied as a soil amendment and a seed coating to control Verticillium wilt of sugar beet. Biocontrol Sci. Tech. 27, 1019–1037. 10.1080/09583157.2017.1357800. DOI
Lugtenberg B., Kamilova F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556. 10.1146/annurev.micro.62.081307.162918. PubMed DOI
Lupwayi N. Z., Lafond G. P., Ziadi N., Grant C. A. (2012). Soil microbial response to nitrogen fertilizer and tillage in barley and corn. Soil Til. Res. 118, 139–146. 10.1016/j.still.2011.11.006. DOI
Ma Y., Látr A., Rocha I., Freitas H., Vosátka M., Oliveira R. S. (2019). Delivery of inoculum of rhizophagus irregularis via seed coating in combination with pseudomonas libanensis for cowpea production. Agronomy 9, 33. 10.3390/agronomy9010033. DOI
Ma Y., Oliveira R. S., Freitas H., Zhang C. (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front. Plant Sci. 7, 918. 10.3389/fpls.2016.00918. PubMed DOI PMC
Mahmood A., Turgay O. C., Farooq M., Hayat R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol. 92, fiw112. 10.1093/femsec/fiw112. PubMed DOI
Mahmood Y., Khan M. A., Javed N., Arif M. J. (2015). Comparative efficacy of fungicides and biological control agents for the management of chickpea wilt caused by Fusarium oxysporum f. sp. ciceris. J Anim Plant Sci 25, 1063–1071.
Malusá E., Sas-Paszt L., Ciesielska J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. . J. 2012, 1–12. 10.1100/2012/491206. PubMed DOI PMC
Markets & Markets (2018). Market reports biological seed treatment market. Retrieved from https://www.marketsandmarkets.com/Market-Reports/biological-seed-treatment-market-162422288.html, accessed in January 2019.
Massoud S., Meyer S. L., Roberts D., Chitwood D. (2000). Evaluation of trichoderma virens and burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2, 871–879. 10.1163/156854100750112815. DOI
McLean K. L., Swaminathan J., Frampton C. M., Hunt J. S., Ridgway H. J., Stewart A. (2005). Effect of formulation on the rhizosphere competence and biocontrol ability of Trichoderma atroviride C52. Plant Pathol. 54, 212–218. 10.1111/j.1365-3059.2005.01158.x. DOI
McQuilken M. P., Whipps J. M., Cooke R. C. (1990). Control of damping-off in cress and sugar-beet by commercial seed-coating with Pythium oligandrum.. Plant Pathol. 39, 452–462. 10.1111/j.1365-3059.1990.tb02521.x. DOI
Meena S. K., Rakshit A., Singh H. B., Meena V. S. (2017). Effect of nitrogen levels and seed bio-priming on root infection, growth and yield attributes of wheat in varied soil type. Biocatal. Agric. Biotechnol. 12, 172–178. 10.1016/j.bcab.2017.10.006. DOI
Mihuta-Grimm L., Rowe R. C. (1986). Trichoderma spp. as biocontrol agents of rhizoctonia damping-off of radish in organic soil and comparison of four delivery systems. Phytopathology 76, 306–312. 10.1094/Phyto-76-306. DOI
Mohamed A. A., Eweda W. E., Heggo A. M., Hassan E. A. (2014). Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under greenhouse conditions. Ann. Agric. Sci. 59, 109–118. 10.1016/j.aoas.2014.06.015. DOI
Moussa T. A., Almaghrabi O. A., Abdel-Moneim T. S. (2013). Biological control of the wheat root rot caused by Fusarium graminearum using some PGPR strains in Saudi Arabia. Ann. Appl. Biol. 163, 72–81. 10.1111/aab.12034. DOI
Mukherjee K., Sen B. (1998). Biological control of Fusarium wilt of muskmelon by formulations of Aspergillus niger. Isr. J. Plant Sci. 46, 67–72. 10.1080/07929978.1998.10676710. DOI
Müller H., Berg G. (2008). Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 53, 905–916. 10.1007/s10526-007-9111-3. DOI
Murphy B. R., Doohan F. M., Hodkinson T. R. (2017). A seed dressing combining fungal endophyte spores and fungicides improves seedling survival and early growth in barley and oat. Symbiosis 71, 69–76. 10.1007/s13199-016-0418-7. DOI
Nadeem S. M., Ahmad M., Zahir Z. A., Javaid A., Ashraf M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32, 429–448. 10.1016/j.biotechadv.2013.12.005. PubMed DOI
Nath B. C., Bora L. C., Kataki L., Talukdar K., Sharma P., Dutta J., et al. (2016). Plant growth promoting microbes, their compatibility analysis and utility in biointensive management of bacterial wilt of tomato. Int. J. Curr. Microbiol. App. Sci 5, 1007–1016. 10.20546/ijcmas.2016.506.107. DOI
Nawar L. S. (2007). Pathological and rhizospherical studies on root-rot disease of squash in Saudi Arabia and its control. Afr. J. Biotechnol. 6, 219–226.
Nzanza B., Marais D., Soundy P. (2012). Yield and nutrient content of tomato (Solanum lycopersicum L.) as influenced by Trichoderma harzianum and Glomus mosseae inoculation. Sci. Hortic. 144, 55–59. 10.1016/j.scienta.2012.06.005. DOI
O’Callaghan M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl. Microbiol. Biotechnol. 100, 5729–5746. 10.1007/s00253-016-7590-9 PubMed DOI PMC
Oliveira R. S., Carvalho P., Marques G., Ferreira L., Nunes M., Rocha I., et al. (2017. b). Increased protein content of chickpea (cicer arietinum L.) Inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. J. Sci. . Agric. 97, 4379–4385. 10.1002/jsfa.8201 PubMed DOI
Oliveira R. S., Carvalho P., Marques G., Ferreira L., Pereira S., Nunes M., et al. (2017. a). Improved grain yield of cowpea (vigna unguiculata) under water deficit after inoculation with Bradyrhizobium elkanii and Rhizophagus irregularis.. Crop Pasture Sci. 68, 1052–1059. 10.1071/CP17087 DOI
Oliveira R. S., Ma Y., Rocha I., Carvalho M. F., Vosátka M., Freitas H. (2016. b). Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L. J Toxicol Environ Health. A 79, 320–328. 10.1080/15287394.2016.1153447 PubMed DOI
Oliveira R. S., Rocha I., Ma Y., Vosátka M., Freitas H. (2016. a). Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.). J Toxicol Environ Health A 79, 329–337. 10.1080/15287394.2016.1153448. PubMed DOI
Padhi P. P., Pattanayak S. K. (2018). Effect of lime coating and molybdenum seed treatment on productivity and nutrient uptake of different pulses grown in Alfisols. IJCMAS 7, 1417–1426. 10.20546/ijcmas.2018.702.171 DOI
Palupi T., Ilyas S., Machmud M., Widajati E. (2017). Effect of seed coating with biological agents on seed quality of rice. Biodiversitas 18, 727–732. 10.13057/biodiv/d180241 DOI
Parnell J. J., Berka R., Young H. A., Sturino J. M., Kang Y., Barnhart D. M., et al. (2016). From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front. Plant Sci. 7, 1110. 10.3389/fpls.2016.01110. PubMed DOI PMC
Pedrini S., Merritt D. J., Stevens J., Dixon K. (2017). Seed coating: science or marketing spin? Trends Plant Sci. 22, 106–116. 10.1016/j.tplants.2016.11.002 PubMed DOI
Pereira P., Nesci A., Etcheverry M. (2007). Effects of biocontrol agents on Fusarium verticillioides count and fumonisin content in the maize agroecosystem: impact on rhizospheric bacterial and fungal groups. Biol. control 42, 281–287. 10.1016/j.biocontrol.2007.05.015 DOI
Perelló A. E., Dal Bello G. M. (2011). Suppression of tan spot and plant growth promotion of wheat by synthetic and biological inducers under field conditions. Ann. Appl. Biol. 158, 267–274. 10.1111/j.1744-7348.2011.00460.x DOI
Perelló A. E., Monaco C. I., Moreno M. V., Cordo C. A., Simon M. R. (2006). The effect of Trichoderma harzianum and T. koningii on the control of tan spot (Pyrenophora tritici-repentis) and leaf blotch (Mycosphaerella graminicola) of wheat under field conditions in Argentina. Biocontrol Sci. Tech. 16, 803–813. 10.1080/09583150600700099. DOI
Philippot L., Raaijmakers J. M., Lemanceau P., Van der Putten W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11, 789–799. 10.1038/nrmicro3109. PubMed DOI
Pill W. G., Collins C. M., Goldberger B., Gregory N. (2009). Responses of non-primed or primed seeds of ‘Marketmore 76’cucumber (Cucumis sativus L.) slurry coated with Trichoderma species to planting in growth media infested with Pythium aphanidermatum. Sci. Hortic. 121 (1), 54–62. 10.1016/j.scienta.2009.01.004. DOI
Prashar P., Shah S., (2016). “Impact of fertilizers and pesticides on soil microflora in agricultures,” in Sustainable Agriculture Reviews. Ed. Lichtfouse E. (Cham: Springer; ), 331–361. 10.1007/978-3-319-26777-7_8. DOI
Rao M. S. L., Kulkarni S., Lingaraju S., Nadaf H. L. (2009). Bio-priming of seeds: a potential tool in the integrated management of alternaria blight of sunflower. Helia 32, 107–114. 10.2298/HEL0950107R. DOI
Ratti N., Kumar S., Verma H. N., Gautam S. P. (2001). Improvement in bioavailability of tricalcium phosphate to cymbopogon martini var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiol. Res. 156, 145–149. 10.1078/0944-5013-00095. PubMed DOI
Reganold J. P., Wachter J. M. (2016). Organic agriculture in the twenty-first century. Nat. Plants 2, 15221. 10.1038/nplants.2015.221. PubMed DOI
Rehman A., Farooq M., Naveed M., Nawaz A., Shahzad B. (2018). Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur. J. Agro. 94, 98–107. 10.1016/j.eja.2018.01.017. DOI
Rillig M. C., Mummey D. L. (2006). Mycorrhizas and soil structure. New Phytol. 171, 41–53. 10.1111/j.1469-8137.2006.01750.x. PubMed DOI
Robani H. (1994). Film-coating of horticultural seed. HortTechnology 4, 104b–1105.
Rocha I., Ma Y., Carvalho M. F., Magalhães C., Janoušková M., Vosátka M., et al. (2019. a). Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilization regimes. Arch. Agron. Soil Sci. 65, 31–43. 10.1080/03650340.2018.1479061 DOI
Rocha I., Ma Y., Vosátka M., Freitas H., Oliveira R. S. (2019. b). Growth and nutrition of cowpea (Vigna unguiculata) under water deficit as influenced by microbial inoculation via seed coating. J. Agron. Crop Sci. 205, 447–459. 10.1111/jac.12335 DOI
Roesti D., Gaur R., Johri B. N., Imfeld G., Sharma S., Kawaljeet K., et al. (2006). Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol. Biochem. 38, 1111–1120. 10.1016/j.soilbio.2005.09.010 DOI
Rouphael Y., Colla G., Graziani G., Ritieni A., Cardarelli M., De Pascale S. (2017). Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. . Chem. 234, 10–19. 10- 19, 10,1016/j.foodchem. 2017, 04.175 PubMed
Royal Society of London (2009). Reaping the benefits: science and the sustainable intensification of global agriculture.
Rozier C., Hamzaoui J., Lemoine D., Czarnes S., Legendre L. (2017). Field-based assessment of the mechanism of maize yield enhancement by Azospirillum lipoferum CRT1. Sci. Rep. 7, 7416. 10.1038/s41598-017-07929-8. PubMed DOI PMC
Ruiz-de-La-Cruz G., Aguirre-Mancilla C. L., Godínez-Garrido N. A., Osornio-Flores N. M., Torres-Castillo J. A. (2017). Chitosan mixed with beneficial fungal conidia or fungicide for bean (phaseolus vulgaris l.) seed coating. Interciencia 42, 307–312.
Ruiz-Lozano J. M., Aroca R., (2010). “Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants0,” in arbuscular mycorrhizas: Physiology and Function. Eds. Koltai H., Kapulnik Y. (Dordrecht: Springer; ), 239–256. 10.1007/978-90-481-9489-6_11. DOI
Sabaratnam S., Traquair J. A. (2002). Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol. Control 23, 245–253. 10.1006/bcon.2001.1014. DOI
Schoina C., Stringlis I. A., Pantelides I. S., Tjamos S. E., Paplomatas E. J. (2011). Evaluation of application methods and biocontrol efficacy of Paenibacillus alvei strain K-165, against the cotton black root rot pathogen Thielaviopsis basicola. Biol. Control 58, 68–73. 10.1016/j.biocontrol.2011.04.002. DOI
Scott J. M. (1989). Seed coatings and treatments and their effects on plant establishment. Adv. Agron. 42, 43–83. 10.1016/S0065-2113(08)60523-4. DOI
Sessitsch A., Mitter B. (2015). 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microb. Biotechnol. 8, 32. 10.1111/1751-7915.12180. PubMed DOI PMC
Shaharoona B., Arshad M., Zahir Z. A. (2006). Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett. Appl. Microbiol. 42, 155–159. 10.1111/j.1472-765X.2005.01827.x. PubMed DOI
Shaharoona B., Naveed M., Arshad M., Zahir Z. A. (2008). Fertilizer-dependent efficiency of pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl. Microbiol. Biotechnol. 79, 147–155. 10.1007/s00253-008-1419-0. PubMed DOI
Shahzad S., Khan M. Y., Zahir Z. A., Asghar H. N., Chaudhry U. K. (2017). Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions. Pak. J. Bot. 49, 1523–1530
Sharma A., Johri B. N., Sharma A. K., Glick B. R. (2003). Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem. 35, 887–894. 10.1016/S0038-0717(03)00119-6 DOI
Sikes B. A. (2010). When do arbuscular mycorrhizal fungi protect plant roots from pathogens? Plant Signaling Behav. 5, 763–765. 10.4161/psb.5.6.11776. PubMed DOI PMC
Sim J. B., Chung I. M., Ku H. M., Choi H. W., Lee J. M., Chun S. C. (2008). Enhancing the biological control of rice seedling disease by adding specific carbon sources into the Bacillus cereus D324 formulation in water-seeded rice. Plant Pathol. J. 24, 58–62. 10.5423/PPJ.2008.24.1.058 DOI
Singh A., Jain A., Sarma B. K., Upadhyay R. S., Singh H. B. (2014). Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol. Res. 169, 353–360. 10.1016/j.micres.2013.09.014 PubMed DOI
Singh V., Mawar R., Lodha S. (2012). Combined effects of biocontrol agents and soil amendments on soil microbial populations, plant growth and incidence of charcoal rot of cowpea and wilt of cumin. Phytopathol. Mediterr., 51, 307–316. 10.14601/Phytopathol_Mediterr-9474 DOI
Sivan A., Chet I. (1986). Biological control of Fusarium spp. in cotton, wheat and muskmelon by Trichoderma harzianum.. J.Phytopathol. 116, 39–47. 10.1111/j.1439-0434.1986.tb00892.x DOI
Sivan A., Elad Y., Chet I. (1984). Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum.. Phytopathology 74, 498–501. 10.1094/Phyto-74-498 DOI
Sivan A., Ucko O., Chet I. (1987). Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. . Dis. 71, 587–592. 10.1094/PD-71-0587 DOI
Smith R. S. (1992). Legume inoculant formulation and application. Can. J. Microbiol. 38, 485–492. 10.1139/m92-080 DOI
Srivastava R., Khalid A., Singh U. S., Sharma A. K. (2010). Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol. control 53, 24–31. 10.1016/j.biocontrol.2009.11.012 DOI
Swaminathan J., Van Koten C., Henderson H. V., Jackson T. A., Wilson M. J. (2016). Formulations for delivering Trichoderma atroviridae spores as seed coatings, effects of temperature and relative humidity on storage stability. J. Appl. Microbiol. 120, 425–431. 10.1111/jam.13006 PubMed DOI
Taylor A. G., Eckenrode C. J., Straub R. W. (2001). Seed coating technologies and treatments for onion: challenges and progress. HortScience 36, 199–205. 10.21273/HORTSCI.36.2.199 DOI
Taylor A. G., Min T. G., Harman G. E., Jin X. (1991). Liquid coating formulation for the application of biological seed treatments of Trichoderma harzianum.. Biol. Control 1, 16–22. 10.1016/1049-9644(91)90096-I. DOI
Tilak K. V. B. R., Ranganayaki N., Manoharachari C. (2006). Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur. J. Soil Sci. 57, 67–71. 10.1111/j.1365-2389.2006.00771.x. DOI
Timmusk S., Behers L., Muthoni J., Muraya A., Aronsson A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Front. Plant Sci. 8, 49. 10.3389/fpls.2017.00049. PubMed DOI PMC
Tsiafouli M. A., Thébault E., Sgardelis S. P., De Ruiter P. C., Van Der Putten W. H., Birkhofer K., et al. (2015). Intensive agriculture reduces soil biodiversity across Europe. Global Change Biol. 21, 973–985. 10.1111/gcb.12752. PubMed DOI
Ugoji E. O., Laing M. D., Hunter C. H. (2006). An investigation of the shelf-life (storage) of Bacillus isolates on seeds. S. Afr. J. Bot. 72, 28–33. 10.1016/j.sajb.2005.04.001. DOI
Van Elsas J. D., Heijnen C. E. (1990). Methods for the introduction of bacteria into soil: a review. Biol. Fert. Soils 10, 127–133. 10.1007/BF00336248. DOI
Vejan P., Abdullah R., Khadiran T., Ismail S., Boyce e A.N. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability - a review. Molecules 21, 573. 10.3390/molecules21050573. PubMed DOI PMC
Vessey J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586. 10.1023/A:1026037216893. DOI
Vosátka M., Látr A., Gianinazzi S., Albrechtová J. (2012). Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58, 29–37. 10.1007/s13199-012-0208-9. DOI
Vurukonda S. S. K. P., Vardharajula S., Shrivastava M., SkZ A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24. 10.1016/j.micres.2015.12.003 PubMed DOI
Willems A. (2006). The taxonomy of rhizobia: an overview. Plant Soil 287, 3–14. 10.1007/978-1-4020-5765-6_1 DOI
Woomer P., Huising J., Giller K. (2017). N2Africa Final Report of the First Phase - 2009-2013.
Xavier I. J., Holloway G., Leggett M. (2004). Development of rhizobial inoculant formulations. Crop Manag. 3. 10.1094/CM-2004-0301-06-RV DOI
Xue L., Xue Q., Chen Q., Lin C., Shen G., Zhao J. (2013). Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Prot. 43, 231–240. 10.1016/j.cropro.2012.10.002 DOI
Zhou J., Deng B., Zhang Y., Cobb A. B., Zhang Z. (2017). Molybdate in rhizobial seed-coat formulations improves the production and nodulation of Alfalfa. PloS One 12, e0170179. 10.1371/journal.pone.0170179 PubMed DOI PMC
Zhou Y., Wang Y., Zhu X., Liu R., Xiang P., Chen J., et al. (2018). Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean. PloS One 12, e0182654. 10.1371/journal.pone.0182654 PubMed DOI PMC