CaCO3 Polymorphs Used as Additives in Filament Production for 3D Printing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 202108
Institute of Technology and Business
RVO 68378297
Czech Academy of Sciences
PubMed
35012221
PubMed Central
PMC8747344
DOI
10.3390/polym14010199
PII: polym14010199
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, CaCO3 polymorphs, FFF, additives, filament, mechanical properties, polypropylene,
- Publikační typ
- časopisecké články MeSH
Nowadays, additive manufacturing-also called 3D printing-represents a well-established technology in the field of the processing of various types of materials manufacturing products used in many industrial sectors. The most common type of 3D printing uses the fused filament fabrication (FFF) method, in which materials based on thermoplastics or elastomers are processed into filaments. Much effort was dedicated to improving the properties and processing of such printed filaments, and various types of inorganic and organic additives have been found to play a beneficial role. One of them, calcium carbonate (CaCO3), is standardly used as filler for the processing of polymeric materials. However, it is well-known from its different applications that CaCO3 crystals may represent particles of different morphologies and shapes that may have a crucial impact on the final properties of the resulting products. For this reason, three different synthetic polymorphs of CaCO3 (aragonite, calcite, and vaterite) and commercially available calcite powders were applied as fillers for the fabrication of polymeric filaments. Analysis of obtained data from different testing techniques has shown significant influence of filament properties depending on the type of applied CaCO3 polymorph. Aragonite particles showed a beneficial impact on the mechanical properties of produced filaments. The obtained results may help to fabricate products with enhanced properties using 3D printing FFF technology.
Zobrazit více v PubMed
Lille M., Nurmela A., Nordlund E., Metsä-Kortelainen S., Sozer N. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J. Food Eng. 2018;220:20–27. doi: 10.1016/j.jfoodeng.2017.04.034. DOI
Böckin D., Tillman A.-M. Environmental assessment of additive manufacturing in the automotive industry. J. Clean. Prod. 2019;226:977–987. doi: 10.1016/j.jclepro.2019.04.086. DOI
Serra T., Mateos-Timoneda M.A., Planell J.A., Navarro M. 3D printed PLA-based scaffolds: A versatile tool in regenerative medicine. Organogenesis. 2013;9:239–244. doi: 10.4161/org.26048. PubMed DOI PMC
Zhakeyev A., Wang P., Zhang L., Shu W., Wang H., Xuan J. Additive manufacturing: Unlocking the evolution of energy materials. Adv. Sci. 2017;4:1700187. doi: 10.1002/advs.201700187. PubMed DOI PMC
Hambach M., Rutzen M., Volkmer D. 3D Concrete Printing Technology. Elsevier; Amsterdam, The Netherlands: 2019. Properties of 3D-printed fiber-reinforced Portland cement paste; pp. 73–113.
Alexander C. Streamlining automotive production with additive manufacturing. Quality. 2018;57:37–39.
Rusling J.F. Developing microfluidic sensing devices using 3D printing. ACS Sens. 2018;3:522–526. doi: 10.1021/acssensors.8b00079. PubMed DOI PMC
Culmone C., Smit G., Breedveld P. Additive manufacturing of medical instruments: A state-of-the-art review. Addit. Manuf. 2019;27:461–473. doi: 10.1016/j.addma.2019.03.015. DOI
Kessler A., Hickel R., Reymus M. 3D printing in dentistry—State of the art. Oper. Dent. 2020;45:30–40. doi: 10.2341/18-229-L. PubMed DOI
Zhang J., Jung Y.-G. Additive Manufacturing: Materials, Processes, Quantifications and Applications. Butterworth-Heinemann; Oxford, UK: 2018.
Huang W.D. How to treat additive manufacturing (3D printing) from a rational perspective. Adv. Mater. Ind. 2013;1:9–12.
Mwema F.M., Akinlabi E.T. Fused Deposition Modeling. Springer; Cham, Switzerland: 2020. Basics of fused deposition modelling (FDM) pp. 1–15.
Lyu J., Manoochehri S. Online Convolutional Neural Network-based anomaly detection and quality control for Fused Filament Fabrication process. Virtual Phys. Prototyp. 2021;16:160–177. doi: 10.1080/17452759.2021.1905858. DOI
Yap Y.L., Sing S.L., Yeong W.Y. A review of 3D printing processes and materials for soft robotics. Rapid Prototyp. J. 2020;26:1346–1361. doi: 10.1108/RPJ-11-2019-0302. DOI
Vanaei H.R., Shirinbayan M., Vanaei S., Fitoussi J., Khelladi S., Tcharkhtchi A. Multi-scale damage analysis and fatigue behavior of PLA manufactured by fused deposition modeling (FDM) Rapid Prototyp. J. 2021;27:371–378. doi: 10.1108/RPJ-11-2019-0300. DOI
Kamaal M., Anas M., Rastogi H., Bhardwaj N., Rahaman A. Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Prog. Addit. Manuf. 2021;6:63–69. doi: 10.1007/s40964-020-00145-3. DOI
Maurya N.K., Rastogi V., Singh P. Fabrication of prototype connecting rod of PLA plastic material using FDM prototype technology. Indian J. Eng. Mater. Sci. 2021;27:333–343.
Scaffaro R., Maio A., Gulino E.F., Alaimo G., Morreale M. Green Composites Based on PLA and Agricultural or Marine Waste Prepared by FDM. Polymers. 2021;13:1361. doi: 10.3390/polym13091361. PubMed DOI PMC
Samykano M. Mechanical Property and Prediction Model for FDM-3D Printed Polylactic Acid (PLA) Arab. J. Sci. Eng. 2021;46:7875–7892. doi: 10.1007/s13369-021-05617-4. DOI
Cress A.K., Huynh J., Anderson E.H., O’neill R., Schneider Y., Keleş Ö. Effect of recycling on the mechanical behavior and structure of additively manufactured acrylonitrile butadiene styrene (ABS) J. Clean. Prod. 2021;279:123689. doi: 10.1016/j.jclepro.2020.123689. DOI
Venkatraman R., Raghuraman S. Experimental analysis on density, micro-hardness, surface roughness and processing time of Acrylonitrile Butadiene Styrene (ABS) through Fused Deposition Modeling (FDM) using Box Behnken Design (BBD) Mater. Today Commun. 2021;27:102353.
Nathaphan S., Trutassanawin W. Effects of process parameters on compressive property of FDM with ABS. Rapid Prototyp. J. 2021;27:905–917. doi: 10.1108/RPJ-12-2019-0309. DOI
Sardinha M., Vicente C.M.S., Frutuoso N., Leite M., Ribeiro R., Reis L. Effect of the ironing process on ABS parts produced by FDM. Mater. Des. Process. Commun. 2021;3:e151. doi: 10.1002/mdp2.151. DOI
Wang B., Chen Y., Qu T., Li F. Structure and Properties of Multi-walled Carbon Nanotube/Acrylonitrile Butadiene Styrene Nanocomposite Specimens Prepared by Fused Deposition Modeling. J. Macromol. Sci. B. 2021;60:77–87. doi: 10.1080/00222348.2020.1824756. DOI
Bakır A.A., Atik R., Özerinç S. Effect of fused deposition modeling process parameters on the mechanical properties of recycled polyethylene terephthalate parts. J. Appl. Polym. Sci. 2021;138:49709. doi: 10.1002/app.49709. DOI
Özen A., Ganzosch G., Barchiesi E., Auhl D.W., Müller W.H. Investigation of deformation behavior of PETG-FDM-printed metamaterials with pantographic substructures based on different slicing strategies. Compos. Adv. Mater. 2021;30:26349833211016476. doi: 10.1177/26349833211016477. DOI
Srinidhi M.S., Soundararajan R., Satishkumar K.S., Suresh S. Enhancing the FDM infill pattern outcomes of mechanical behavior for as-built and annealed PETG and CFPETG composites parts. Mater. Today Proc. 2021;45:7208–7212. doi: 10.1016/j.matpr.2021.02.417. DOI
Panneerselvam T., Raghuraman S., Krishnan N.V. Investigating Mechanical Properties of 3D-Printed Polyethylene Terephthalate Glycol Material Under Fused Deposition Modeling. J. Inst. Eng. Ser. C. 2021;102:375–387. doi: 10.1007/s40032-020-00646-8. DOI
Carneiro O.S., Silva A.F., Gomes R. Fused deposition modeling with polypropylene. Mater. Des. 2015;83:768–776. doi: 10.1016/j.matdes.2015.06.053. DOI
Wang L., Gardner D.J. Effect of fused layer modeling (FLM) processing parameters on impact strength of cellular polypropylene. Polymer. 2017;113:74–80. doi: 10.1016/j.polymer.2017.02.055. DOI
Elkins K., Nordby H., Janak C., Gray IV R.W., Helge Bohn J., Baird D.G. Soft elastomers for fused deposition modeling; Proceedings of the 1997 International Solid Freeform Fabrication Symposium; Austin, TX, USA. 11–13 August 1997.
Chaudhry M.S., Czekanski A. Evaluating FDM process parameter sensitive mechanical performance of elastomers at various strain rates of loading. Materials. 2020;13:3202. doi: 10.3390/ma13143202. PubMed DOI PMC
Ambrogi V., Carfagna C., Cerruti P., Marturano V. Additives in Polymers. Modif. Polym. Prop. 2017:87–108. doi: 10.1016/B978-0-323-44353-1.00004-X. DOI
Crompton T.R. Chemical Analysis of Additives in Plastics. 2nd ed. Elsevier; Amsterdam, The Netherlands: 1977.
Bolgar M., Hubball J., Groeger J., Meronek S. Handbook for the Chemical Analysis of Plastic and Polymer Additives. 2nd ed. CRC Press; Boca Raton, FL, USA: 2015.
Delva L., Hubo S., Cardon L., Ragaert K. On the role of flame retardants in mechanical recycling of solid plastic waste. Waste Manag. 2018;82:198–206. doi: 10.1016/j.wasman.2018.10.030. PubMed DOI
Jonkers N., Krop H., van Ewijk H., Leonards P.E.G. Life cycle assessment of flame retardants in an electronics application. Int. J. Life Cycle Assess. 2016;21:146–161. doi: 10.1007/s11367-015-0999-z. DOI
Al-Malaika S., Axtell F., Rothon R., Gilbert M. Brydson’s Plastics Materials. Elsevier; Amsterdam, The Netherlands: 2017. Additives for Plastics; pp. 127–168.
Cherif Lahimer M., Ayed N., Horriche J., Belgaied S. Characterization of plastic packaging additives: Food contact, stability and toxicity. Arab. J. Chem. 2017;10:S1938–S1954. doi: 10.1016/j.arabjc.2013.07.022. DOI
Rodriguez-Blanco J.D., Shaw S., Benning L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale. 2011;3:265–271. doi: 10.1039/C0NR00589D. PubMed DOI
Ševčík R., Šašek P., Viani A. Physical and nanomechanical properties of the synthetic anhydrous crystalline CaCO3 polymorphs: Vaterite, aragonite and calcite. J. Mater. Sci. 2018;53:4022–4033. doi: 10.1007/s10853-017-1884-x. DOI
Nikolakakis I., Pilpel N. Effects of particle size and particle shape on the tensile strengths of powders. Powder Technol. 1985;45:79–82. doi: 10.1016/0032-5910(85)85063-4. DOI
Gorna K., Hund M., Vučak M., Gröhn F., Wegner G. Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers. Mater. Sci. Eng. A. 2008;477:217–225. doi: 10.1016/j.msea.2007.05.045. DOI
Adeosun S.O., Usman M.A., Akpan E.I., Dibie W.I. Characterization of LDPE Reinforced with Calcium Carbonate—Fly Ash Hybrid Filler. University of Lagos; Lagos, Nigeria: 2014.
Rahman G.M.S., Aftab H., Islam M.S., Bin Mukhlish M.Z., Ali F. Enhanced physico-mechanical properties of polyester resin film using CaCO3 filler. Fibers Polym. 2016;17:59–65. doi: 10.1007/s12221-016-5612-y. DOI
Lin H., Dong Y., Jiang L. Preparation of calcium carbonate particles coated with titanium dioxide. Int. J. Miner. Metall. Mater. 2009;16:592–597. doi: 10.1016/S1674-4799(09)60102-3. DOI
Ihueze C.C., Mgbemena C.O. Effects of reinforcement combinations of calcium carbonate nanofiller on the mechanical and creep properties of polypropylene. J. Miner. Mater. Charact. Eng. 2010;9:887. doi: 10.4236/jmmce.2010.910065. DOI
Rothon R. Particulate-Filled Polymer Composites. iSmithers Rapra Publishing; Shrewsbury, UK: 2003.
Murphy J. Additives for Plastics Handbook. Elsevier; Amsterdam, The Netherlands: 2001.
Wiebking H. Fillers in PVC, a Review of the Basics. Volume 1 Specialty Minerals Inc.; Canaan, CT, USA: 1998.
Ševčík R., Mácová P., Estébanez M.P., Viani A. Influence of additions of synthetic anhydrous calcium carbonate polymorphs on nanolime carbonation. Constr. Build. Mater. 2019;228:116802. doi: 10.1016/j.conbuildmat.2019.116802. DOI
Sarkar A., Mahapatra S. Synthesis of all crystalline phases of anhydrous calcium carbonate. Cryst. Growth Des. 2010;10:2129–2135. doi: 10.1021/cg9012813. DOI
Plasty—Stanovení hmotnostního (MFR) a objemového (MVR) indexu toku taveniny termoplastů—Část 1: Standardní Metoda. Volume 28 Czech Agency for Standardization; Hradec Králové, Czech Rrepublic: 2012.
Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 1: Indication of Surface Texture. ISO; Geneva, Switzerland: 2016.
Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO; Geneva, Switzerland: 2019.
Ševčík R., Pérez-Estébanez M., Viani A., Šašek P., Mácová P. Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives. Powder Technol. 2015;284:265–271. doi: 10.1016/j.powtec.2015.06.064. DOI
Mann S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 2009;8:781–792. doi: 10.1038/nmat2496. PubMed DOI
Móczó J. Ph.D. Thesis. Budapest University of Technology and Economics; Budapest, Hungary: 2004. Particulate Filled Polymers, Interaction, Structure and Micromechanical Deformations.
Cogswell F.N. Polymer Melt Rheology: A Guide for Industrial Practice. Elsevier; Amsterdam, The Netherlands: 1981.
Aho J. Rheological Characterization of Polymer Melts in Shear and Extension: Measurement Reliability and Data for Practical Processing. Tampere University of Technology; Tampere, Finland: 2011.
Lippmann F. Sedimentary Carbonate Minerals. Springer; Berlin/Heidelberg, Germany: 1973. Crystal chemistry of sedimentary carbonate minerals; pp. 5–96.
Leong Y.W., Ishak Z.A.M., Ariffin A. Mechanical and thermal properties of talc and calcium carbonate filled polypropylene hybrid composites. J. Appl. Polym. Sci. 2004;91:3327–3336. doi: 10.1002/app.13543. DOI
Leong Y.W., Abu Bakar M.B., Ishak Z.A.M., Ariffin A., Pukanszky B. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J. Appl. Polym. Sci. 2004;91:3315–3326. doi: 10.1002/app.13542. DOI
Da Costa H.M., Ramos V.D., Rocha M.C.G. Rheological properties of polypropylene during multiple extrusion. Polym. Test. 2005;24:86–93. doi: 10.1016/j.polymertesting.2004.06.006. DOI
Rocha M.C.G., Silva A.H., Coutinho F.M.B., Silva A.L.N. Study of composites based on polypropylene and calcium carbonate by experimental design. Polym. Test. 2005;24:1049–1053. doi: 10.1016/j.polymertesting.2005.05.008. DOI
Nikolakakis I., Pilpel N. Effects of particle shape and size on the tensile strengths of powders. Powder Technol. 1988;56:95–103. doi: 10.1016/0032-5910(88)80003-2. DOI
Kalantari B., Huat B.B.K. Peat soil stabilization, using ordinary portland cement, polypropylene fibers, and air curing technique. Electron. J. Geotech. Eng. 2008;13:1–13.
Małek M., Jackowski M., Łasica W., Kadela M. Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on portland cement. Materials. 2020;13:1827. doi: 10.3390/ma13081827. PubMed DOI PMC
Cioni B., Lazzeri A. The role of interfacial interactions in the toughening of precipitated calcium carbonate–polypropylene nanocomposites. Compos. Interfaces. 2010;17:533–549. doi: 10.1163/092764410X513486. DOI
Ansari D.M., Price G.J. Correlation of the material properties of calcium carbonate filled polypropylene with the filler surface energies. J. Appl. Polym. Sci. 2003;88:1951–1955. doi: 10.1002/app.11877. DOI
Lyu S.G., Park S., Sur G.S. The synthesis of vaterite and physical properties of PP/CaCO 3 composites. Korean J. Chem. Eng. 1999;16:538–542. doi: 10.1007/BF02698281. DOI
Lin Y., Chen H., Chan C.-M., Wu J. Effects of coating amount and particle concentration on the impact toughness of polypropylene/CaCO3 nanocomposites. Eur. Polym. J. 2011;47:294–304. doi: 10.1016/j.eurpolymj.2010.12.004. DOI
Yang K., Yang Q., Li G., Zhang Y., Zhang P. Mechanical properties and morphologies of polypropylene/single-filler or hybrid-filler calcium carbonate composites. Polym. Eng. Sci. 2007;47:95–102. doi: 10.1002/pen.20677. DOI
He E., Shang W., Chen S. Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials; Xi’an, China. 21–26 June 2000; p. 431.