Polyetheretherketone bioactivity induced by farringtonite

. 2024 May 28 ; 14 (1) : 12186. [epub] 20240528

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38806564

Grantová podpora
23-07425S Grantová Agentura České Republiky
20-00726S Grantová Agentura České Republiky
23-07425S Grantová Agentura České Republiky
RVO 68378297 Czech Academy of Sciences, Institute of Theoretical and Applied Mechanics
RP/CPS/2022/003 Ministry of Education, Youth and Sports of the Czech Republic

Odkazy

PubMed 38806564
PubMed Central PMC11133311
DOI 10.1038/s41598-024-61941-3
PII: 10.1038/s41598-024-61941-3
Knihovny.cz E-zdroje

Polyetheretherketone (PEEK) is considered as an excellent biomaterial for bone grafting and connective tissue replacement. The clinical potential is, however, limited by its bioinertness, poor osteoconduction, and weak antibacterial activity. These disadvantages can be overcome by introducing suitable additives to produce mineral-polymer composites or coatings. In this work, a PEEK-based bioactive composite has been obtained by blending the polymer with magnesium phosphate (Mg3(PO4)2) particles in amounts ranging from 1 to 10 wt.% using the hot press technique. The obtained composite exhibited improved mechanical and physical properties, above the lower limits set for bone engineering applications. The tested grafts were found to not induce cytotoxicity. The presence of magnesium phosphate induced the mineralisation process with no adverse effects on the expression of the marker crucial for osteoblastic differentiation. The most promising results were observed in the grafts containing 1 wt.% of magnesium phosphate embedded within the PEEK matrix. The improved bioactivity of grafts, together with suitable physical-chemical and mechanical properties, indicate this composite as a promising orthopaedic implant material.

Zobrazit více v PubMed

Ouyang L, et al. Graphene-oxide-decorated microporous polyetheretherketone with superior antibacterial capability and in vitro osteogenesis for orthopedic implant. Macromol. Biosci. 2018;18:1800036. doi: 10.1002/mabi.201800036. PubMed DOI

Tekin S, Cangül S, Adıgüzel Ö, Değer Y. Areas for use of PEEK material in dentistry. Int. Dent. Res. 2018;8:84–92. doi: 10.5577/intdentres.2018.vol8.no2.6. DOI

Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The role of polyether ether ketone (peek) in dentistry—A review. JMedLife. 2019;12:5–9. doi: 10.25122/jml-2019-0003. PubMed DOI PMC

Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodontic Res. 2016;60:12–19. doi: 10.1016/j.jpor.2015.10.001. PubMed DOI

Meng X, Du Z, Wang Y. Characteristics of wear particles and wear behavior of retrieved PEEK-on-HXLPE total knee implants: A preliminary study. RSC Adv. 2018;8:30330–30339. doi: 10.1039/C8RA04661A. PubMed DOI PMC

Mavrogenis AF, Vottis C, Triantafyllopoulos G, Papagelopoulos PJ, Pneumaticos SG. PEEK rod systems for the spine. Eur. J. Orthop. Surg. Traumatol. 2014;24:111–116. doi: 10.1007/s00590-014-1421-4. PubMed DOI

Wang A, et al. Carbon fiber reinforced polyether ether ketone composite as a bearing surface for total hip replacement. Tribol. Int. 1998;31:661–667. doi: 10.1016/S0301-679X(98)00088-7. DOI

Kong F, Nie Z, Liu Z, Hou S, Ji J. Developments of nano-TiO2 incorporated hydroxyapatite/PEEK composite strut for cervical reconstruction and interbody fusion after corpectomy with anterior plate fixation. J. Photochem. Photobiol. B Biol. 2018;187:120–125. doi: 10.1016/j.jphotobiol.2018.07.016. PubMed DOI

Liu Y, et al. Comparison of a zero-profile anchored spacer (ROI-C) and the polyetheretherketone (PEEK) cages with an anterior plate in anterior cervical discectomy and fusion for multilevel cervical spondylotic myelopathy. Eur. Spine J. 2016;25:1881–1890. doi: 10.1007/s00586-016-4500-x. PubMed DOI

Sova, Miloš. & Krebs, J. Termoplasty v praxi: praktická příručka pro konstruktéry, výrobce, zpracovatele a uživatele termoplastů. (Verlag Dashöfer, Praha, 2001).

Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–4869. doi: 10.1016/j.biomaterials.2007.07.013. PubMed DOI PMC

Katzer A, Marquardt H, Westendorf J, Wening JV, von Foerster G. Polyetheretherketone—Cytotoxicity and mutagenicity in vitro. Biomaterials. 2002;23:1749–1759. doi: 10.1016/S0142-9612(01)00300-3. PubMed DOI

Gallo J, Landor I, Cechová I, Jahoda D. Comparison of Hydroxyapatite-coated stems in total hip arthroplasty after a minimum 10-years follow-up. Acta Chir. Orthop. Traumatol. Cech. 2008;75:339–346. doi: 10.55095/achot2008/062. PubMed DOI

Landor, I. et al. Dlouhodobé zkušenosti s kombinovaným hydroxyapatitovým povrchem ARBOND v osteointegraci implantátu. Acta Chir. Orthop. Traum. Čech. 172–178 (2009). PubMed

Ma, R. et al. Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. IJN 3949 (2014). 10.2147/IJN.S67358. PubMed PMC

Monich PR, Henriques B, Novaes De Oliveira AP, Souza JCM, Fredel MC. Mechanical and biological behavior of biomedical PEEK matrix composites: A focused review. Mater. Lett. 2016;185:593–597. doi: 10.1016/j.matlet.2016.09.005. DOI

Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: A review. Compos. Sci. Technol. 2001;61:1189–1224. doi: 10.1016/S0266-3538(00)00241-4. DOI

Abdullah MR, Goharian A, Abdul Kadir MR, Wahit MU. Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants—A review: Biomechanical and bioactivity concepts of peek. J. Biomed. Mater. Res. 2015;103:3689–3702. doi: 10.1002/jbm.a.35480. PubMed DOI

Kaur, G. Bioactive Glasses: Potential Biomaterials for Future Therapy. (Springer International Publishing, Cham, 2017). 10.1007/978-3-319-45716-1.

Ibrahim A-R, et al. Synthesis of spongy-like mesoporous hydroxyapatite from raw waste eggshells for enhanced dissolution of ibuprofen loaded via supercritical CO2. IJMS. 2015;16:7960–7975. doi: 10.3390/ijms16047960. PubMed DOI PMC

Klammert U, Ignatius A, Wolfram U, Reuther T, Gbureck U. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Acta Biomaterialia. 2011;7:3469–3475. doi: 10.1016/j.actbio.2011.05.022. PubMed DOI

Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: Brushite and monetite. Acta Biomaterialia. 2012;8:474–487. doi: 10.1016/j.actbio.2011.08.005. PubMed DOI

Tamimi F, et al. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. monetite. Acta Biomaterialia. 2012;8:3161–3169. doi: 10.1016/j.actbio.2012.04.025. PubMed DOI

Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—A review. Acta Biomaterialia. 2014;10:557–579. doi: 10.1016/j.actbio.2013.10.036. PubMed DOI

Sikder P, et al. Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing. Dental Mater. 2020;36:865–883. doi: 10.1016/j.dental.2020.04.008. PubMed DOI PMC

Kanter B, Geffers M, Ignatius A, Gbureck U. Control of in vivo mineral bone cement degradation. Acta Biomaterialia. 2014;10:3279–3287. doi: 10.1016/j.actbio.2014.04.020. PubMed DOI

Kanter B, et al. Bone regeneration capacity of magnesium phosphate cements in a large animal model. Acta Biomaterialia. 2018;69:352–361. doi: 10.1016/j.actbio.2018.01.035. PubMed DOI

Tamimi F, et al. Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions. Acta Biomaterialia. 2011;7:2678–2685. doi: 10.1016/j.actbio.2011.02.007. PubMed DOI

Ostrowski N, Roy A, Kumta PN. Magnesium phosphate cement systems for hard tissue applications: A review. ACS Biomater. Sci. Eng. 2016;2:1067–1083. doi: 10.1021/acsbiomaterials.6b00056. PubMed DOI

Klammert U, et al. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 2010;21:2947–2953. doi: 10.1007/s10856-010-4148-8. PubMed DOI

ISO 25178:2016. Geometrical product specifications (GPS)—Surface texture: Areal—Part 1: Indication of surface texture. 2016.

ISO 10993-5: 2009 Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity; International Organization for Standardization: Geneva, Switzerland, 2009., n.d.

Meininger S, et al. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomaterialia. 2016;31:401–411. doi: 10.1016/j.actbio.2015.11.050. PubMed DOI

Farag MM, Ahmed MM, Abdallah NM, Swieszkowski W, Shehabeldine AM. The combined antibacterial and anticancer properties of nano Ce-containing Mg-phosphate ceramic. Life Sci. 2020;257:117999. doi: 10.1016/j.lfs.2020.117999. PubMed DOI

Vorndran E, et al. Hydraulic setting Mg3 (PO4) 2 powders for 3D printing technology. Adv. Appl. Ceram. 2011;110:476–481. doi: 10.1179/1743676111Y.0000000030. DOI

Mortazavi B, Bardon J, Ahzi S. Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput. Mater. Sci. 2013;69:100–106. doi: 10.1016/j.commatsci.2012.11.035. DOI

Ramgobin A, Fontaine G, Bourbigot S. A case study of polyether ether ketone (I): Investigating the thermal and fire behavior of a high-performance material. Polymers. 2020;12:1789. doi: 10.3390/polym12081789. PubMed DOI PMC

Cogswell FN. Thermoplastic Aromatic Polymer Composites: A Study of the Structure, Processing and Properties of Carbon Fibre Reinforced Polyetheretherketone and Related Materials. Elsevier; 2013.

Prochor P, Mierzejewska ŻA. Influence of the surface roughness of PEEK GRF30 and Ti6Al4V SLM on the viability of primary human osteoblasts determined by the MTT test. Materials. 2019;12:4189. doi: 10.3390/ma12244189. PubMed DOI PMC

Ren Y, Sikder P, Lin B, Bhaduri SB. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK) Mater. Sci. Eng. C. 2018;85:107–113. doi: 10.1016/j.msec.2017.12.025. PubMed DOI

Rupp F, et al. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomaterialia. 2014;10:2894–2906. doi: 10.1016/j.actbio.2014.02.040. PubMed DOI PMC

Elhattab K, Sikder P, Walker JM, Bottino MC, Bhaduri SB. Fabrication and evaluation of 3-D printed PEEK scaffolds containing Macropores by design. Mater. Lett. 2020;263:127227. doi: 10.1016/j.matlet.2019.127227. DOI

Mei S, et al. Influences of tantalum pentoxide and surface coarsening on surface roughness, hydrophilicity, surface energy, protein adsorption and cell responses to PEEK based biocomposite. Colloids Surfaces B Biointerfaces. 2019;174:207–215. doi: 10.1016/j.colsurfb.2018.10.081. PubMed DOI

Cassie ABD, Baxter S. Wettability of porous surfaces. Trans. Faraday Soc. 1944;40:546. doi: 10.1039/tf9444000546. DOI

Jia X. Wettability of rough polymer, metal and oxide surfaces as well as of composite surfaces. J. Adhesion Sci. Technol. 2008;22:1893–1905. doi: 10.1163/156856108X320041. DOI

Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials. 2008;29:1563–1572. doi: 10.1016/j.biomaterials.2007.12.001. PubMed DOI

Kim J-A, Lim J, Naren R, Yun H, Park EK. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Acta Biomaterialia. 2016;44:155–167. doi: 10.1016/j.actbio.2016.08.039. PubMed DOI

Nabiyouni M, Brückner T, Zhou H, Gbureck U, Bhaduri SB. Magnesium-based bioceramics in orthopedic applications. Acta Biomaterialia. 2018;66:23–43. doi: 10.1016/j.actbio.2017.11.033. PubMed DOI

Golafshan N, et al. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Biomaterials. 2020;261:120302. doi: 10.1016/j.biomaterials.2020.120302. PubMed DOI PMC

Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002;62:600–612. doi: 10.1002/jbm.10280. PubMed DOI

Xiaoyong, S. et al. Experimental Analysis of High Temperature PEEK Materials on 3D Printing Test. in 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) 13–16 (IEEE, Changsha, China, 2017). 10.1109/ICMTMA.2017.0012.

Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus–density relationships depend on anatomic site. J. Biomech. 2003;36:897–904. doi: 10.1016/S0021-9290(03)00071-X. PubMed DOI

Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998;20:92–102. doi: 10.1016/S1350-4533(98)00007-1. PubMed DOI

Zárybnická L, et al. CaCO3 polymorphs used as additives in filament production for 3D printing. Polymers. 2022;14:199. doi: 10.3390/polym14010199. PubMed DOI PMC

Roeder RK, Sproul MM, Turner CH. Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J. Biomed. Mater. Res. 2003;67A:801–812. doi: 10.1002/jbm.a.10140. PubMed DOI

Jorfi, M. & Foster, E. J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, (2015).

Osman AF, Alakrach AM, Kalo H, Azmi WNW, Hashim F. In vitro biostability and biocompatibility of ethyl vinyl acetate (EVA) nanocomposites for biomedical applications. RSC Adv. 2015;5:31485–31495. doi: 10.1039/C4RA15116J. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...