Polyetheretherketone bioactivity induced by farringtonite
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-07425S
Grantová Agentura České Republiky
20-00726S
Grantová Agentura České Republiky
23-07425S
Grantová Agentura České Republiky
RVO 68378297
Czech Academy of Sciences, Institute of Theoretical and Applied Mechanics
RP/CPS/2022/003
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
38806564
PubMed Central
PMC11133311
DOI
10.1038/s41598-024-61941-3
PII: 10.1038/s41598-024-61941-3
Knihovny.cz E-zdroje
- MeSH
- benzofenony * MeSH
- biokompatibilní materiály * chemie MeSH
- fosfáty * chemie MeSH
- ketony * chemie farmakologie MeSH
- lidé MeSH
- osteoblasty účinky léků metabolismus MeSH
- polyethylenglykoly * chemie MeSH
- polymery * chemie MeSH
- sloučeniny hořčíku chemie farmakologie MeSH
- testování materiálů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzofenony * MeSH
- biokompatibilní materiály * MeSH
- fosfáty * MeSH
- ketony * MeSH
- magnesium phosphate MeSH Prohlížeč
- polyetheretherketone MeSH Prohlížeč
- polyethylenglykoly * MeSH
- polymery * MeSH
- sloučeniny hořčíku MeSH
Polyetheretherketone (PEEK) is considered as an excellent biomaterial for bone grafting and connective tissue replacement. The clinical potential is, however, limited by its bioinertness, poor osteoconduction, and weak antibacterial activity. These disadvantages can be overcome by introducing suitable additives to produce mineral-polymer composites or coatings. In this work, a PEEK-based bioactive composite has been obtained by blending the polymer with magnesium phosphate (Mg3(PO4)2) particles in amounts ranging from 1 to 10 wt.% using the hot press technique. The obtained composite exhibited improved mechanical and physical properties, above the lower limits set for bone engineering applications. The tested grafts were found to not induce cytotoxicity. The presence of magnesium phosphate induced the mineralisation process with no adverse effects on the expression of the marker crucial for osteoblastic differentiation. The most promising results were observed in the grafts containing 1 wt.% of magnesium phosphate embedded within the PEEK matrix. The improved bioactivity of grafts, together with suitable physical-chemical and mechanical properties, indicate this composite as a promising orthopaedic implant material.
Zobrazit více v PubMed
Ouyang L, et al. Graphene-oxide-decorated microporous polyetheretherketone with superior antibacterial capability and in vitro osteogenesis for orthopedic implant. Macromol. Biosci. 2018;18:1800036. doi: 10.1002/mabi.201800036. PubMed DOI
Tekin S, Cangül S, Adıgüzel Ö, Değer Y. Areas for use of PEEK material in dentistry. Int. Dent. Res. 2018;8:84–92. doi: 10.5577/intdentres.2018.vol8.no2.6. DOI
Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The role of polyether ether ketone (peek) in dentistry—A review. JMedLife. 2019;12:5–9. doi: 10.25122/jml-2019-0003. PubMed DOI PMC
Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodontic Res. 2016;60:12–19. doi: 10.1016/j.jpor.2015.10.001. PubMed DOI
Meng X, Du Z, Wang Y. Characteristics of wear particles and wear behavior of retrieved PEEK-on-HXLPE total knee implants: A preliminary study. RSC Adv. 2018;8:30330–30339. doi: 10.1039/C8RA04661A. PubMed DOI PMC
Mavrogenis AF, Vottis C, Triantafyllopoulos G, Papagelopoulos PJ, Pneumaticos SG. PEEK rod systems for the spine. Eur. J. Orthop. Surg. Traumatol. 2014;24:111–116. doi: 10.1007/s00590-014-1421-4. PubMed DOI
Wang A, et al. Carbon fiber reinforced polyether ether ketone composite as a bearing surface for total hip replacement. Tribol. Int. 1998;31:661–667. doi: 10.1016/S0301-679X(98)00088-7. DOI
Kong F, Nie Z, Liu Z, Hou S, Ji J. Developments of nano-TiO2 incorporated hydroxyapatite/PEEK composite strut for cervical reconstruction and interbody fusion after corpectomy with anterior plate fixation. J. Photochem. Photobiol. B Biol. 2018;187:120–125. doi: 10.1016/j.jphotobiol.2018.07.016. PubMed DOI
Liu Y, et al. Comparison of a zero-profile anchored spacer (ROI-C) and the polyetheretherketone (PEEK) cages with an anterior plate in anterior cervical discectomy and fusion for multilevel cervical spondylotic myelopathy. Eur. Spine J. 2016;25:1881–1890. doi: 10.1007/s00586-016-4500-x. PubMed DOI
Sova, Miloš. & Krebs, J. Termoplasty v praxi: praktická příručka pro konstruktéry, výrobce, zpracovatele a uživatele termoplastů. (Verlag Dashöfer, Praha, 2001).
Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–4869. doi: 10.1016/j.biomaterials.2007.07.013. PubMed DOI PMC
Katzer A, Marquardt H, Westendorf J, Wening JV, von Foerster G. Polyetheretherketone—Cytotoxicity and mutagenicity in vitro. Biomaterials. 2002;23:1749–1759. doi: 10.1016/S0142-9612(01)00300-3. PubMed DOI
Gallo J, Landor I, Cechová I, Jahoda D. Comparison of Hydroxyapatite-coated stems in total hip arthroplasty after a minimum 10-years follow-up. Acta Chir. Orthop. Traumatol. Cech. 2008;75:339–346. doi: 10.55095/achot2008/062. PubMed DOI
Landor, I. et al. Dlouhodobé zkušenosti s kombinovaným hydroxyapatitovým povrchem ARBOND v osteointegraci implantátu. Acta Chir. Orthop. Traum. Čech. 172–178 (2009). PubMed
Ma, R. et al. Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. IJN 3949 (2014). 10.2147/IJN.S67358. PubMed PMC
Monich PR, Henriques B, Novaes De Oliveira AP, Souza JCM, Fredel MC. Mechanical and biological behavior of biomedical PEEK matrix composites: A focused review. Mater. Lett. 2016;185:593–597. doi: 10.1016/j.matlet.2016.09.005. DOI
Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: A review. Compos. Sci. Technol. 2001;61:1189–1224. doi: 10.1016/S0266-3538(00)00241-4. DOI
Abdullah MR, Goharian A, Abdul Kadir MR, Wahit MU. Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants—A review: Biomechanical and bioactivity concepts of peek. J. Biomed. Mater. Res. 2015;103:3689–3702. doi: 10.1002/jbm.a.35480. PubMed DOI
Kaur, G. Bioactive Glasses: Potential Biomaterials for Future Therapy. (Springer International Publishing, Cham, 2017). 10.1007/978-3-319-45716-1.
Ibrahim A-R, et al. Synthesis of spongy-like mesoporous hydroxyapatite from raw waste eggshells for enhanced dissolution of ibuprofen loaded via supercritical CO2. IJMS. 2015;16:7960–7975. doi: 10.3390/ijms16047960. PubMed DOI PMC
Klammert U, Ignatius A, Wolfram U, Reuther T, Gbureck U. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Acta Biomaterialia. 2011;7:3469–3475. doi: 10.1016/j.actbio.2011.05.022. PubMed DOI
Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: Brushite and monetite. Acta Biomaterialia. 2012;8:474–487. doi: 10.1016/j.actbio.2011.08.005. PubMed DOI
Tamimi F, et al. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. monetite. Acta Biomaterialia. 2012;8:3161–3169. doi: 10.1016/j.actbio.2012.04.025. PubMed DOI
Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—A review. Acta Biomaterialia. 2014;10:557–579. doi: 10.1016/j.actbio.2013.10.036. PubMed DOI
Sikder P, et al. Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing. Dental Mater. 2020;36:865–883. doi: 10.1016/j.dental.2020.04.008. PubMed DOI PMC
Kanter B, Geffers M, Ignatius A, Gbureck U. Control of in vivo mineral bone cement degradation. Acta Biomaterialia. 2014;10:3279–3287. doi: 10.1016/j.actbio.2014.04.020. PubMed DOI
Kanter B, et al. Bone regeneration capacity of magnesium phosphate cements in a large animal model. Acta Biomaterialia. 2018;69:352–361. doi: 10.1016/j.actbio.2018.01.035. PubMed DOI
Tamimi F, et al. Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions. Acta Biomaterialia. 2011;7:2678–2685. doi: 10.1016/j.actbio.2011.02.007. PubMed DOI
Ostrowski N, Roy A, Kumta PN. Magnesium phosphate cement systems for hard tissue applications: A review. ACS Biomater. Sci. Eng. 2016;2:1067–1083. doi: 10.1021/acsbiomaterials.6b00056. PubMed DOI
Klammert U, et al. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 2010;21:2947–2953. doi: 10.1007/s10856-010-4148-8. PubMed DOI
ISO 25178:2016. Geometrical product specifications (GPS)—Surface texture: Areal—Part 1: Indication of surface texture. 2016.
ISO 10993-5: 2009 Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity; International Organization for Standardization: Geneva, Switzerland, 2009., n.d.
Meininger S, et al. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomaterialia. 2016;31:401–411. doi: 10.1016/j.actbio.2015.11.050. PubMed DOI
Farag MM, Ahmed MM, Abdallah NM, Swieszkowski W, Shehabeldine AM. The combined antibacterial and anticancer properties of nano Ce-containing Mg-phosphate ceramic. Life Sci. 2020;257:117999. doi: 10.1016/j.lfs.2020.117999. PubMed DOI
Vorndran E, et al. Hydraulic setting Mg3 (PO4) 2 powders for 3D printing technology. Adv. Appl. Ceram. 2011;110:476–481. doi: 10.1179/1743676111Y.0000000030. DOI
Mortazavi B, Bardon J, Ahzi S. Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput. Mater. Sci. 2013;69:100–106. doi: 10.1016/j.commatsci.2012.11.035. DOI
Ramgobin A, Fontaine G, Bourbigot S. A case study of polyether ether ketone (I): Investigating the thermal and fire behavior of a high-performance material. Polymers. 2020;12:1789. doi: 10.3390/polym12081789. PubMed DOI PMC
Cogswell FN. Thermoplastic Aromatic Polymer Composites: A Study of the Structure, Processing and Properties of Carbon Fibre Reinforced Polyetheretherketone and Related Materials. Elsevier; 2013.
Prochor P, Mierzejewska ŻA. Influence of the surface roughness of PEEK GRF30 and Ti6Al4V SLM on the viability of primary human osteoblasts determined by the MTT test. Materials. 2019;12:4189. doi: 10.3390/ma12244189. PubMed DOI PMC
Ren Y, Sikder P, Lin B, Bhaduri SB. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK) Mater. Sci. Eng. C. 2018;85:107–113. doi: 10.1016/j.msec.2017.12.025. PubMed DOI
Rupp F, et al. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomaterialia. 2014;10:2894–2906. doi: 10.1016/j.actbio.2014.02.040. PubMed DOI PMC
Elhattab K, Sikder P, Walker JM, Bottino MC, Bhaduri SB. Fabrication and evaluation of 3-D printed PEEK scaffolds containing Macropores by design. Mater. Lett. 2020;263:127227. doi: 10.1016/j.matlet.2019.127227. DOI
Mei S, et al. Influences of tantalum pentoxide and surface coarsening on surface roughness, hydrophilicity, surface energy, protein adsorption and cell responses to PEEK based biocomposite. Colloids Surfaces B Biointerfaces. 2019;174:207–215. doi: 10.1016/j.colsurfb.2018.10.081. PubMed DOI
Cassie ABD, Baxter S. Wettability of porous surfaces. Trans. Faraday Soc. 1944;40:546. doi: 10.1039/tf9444000546. DOI
Jia X. Wettability of rough polymer, metal and oxide surfaces as well as of composite surfaces. J. Adhesion Sci. Technol. 2008;22:1893–1905. doi: 10.1163/156856108X320041. DOI
Sagomonyants KB, Jarman-Smith ML, Devine JN, Aronow MS, Gronowicz GA. The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials. 2008;29:1563–1572. doi: 10.1016/j.biomaterials.2007.12.001. PubMed DOI
Kim J-A, Lim J, Naren R, Yun H, Park EK. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Acta Biomaterialia. 2016;44:155–167. doi: 10.1016/j.actbio.2016.08.039. PubMed DOI
Nabiyouni M, Brückner T, Zhou H, Gbureck U, Bhaduri SB. Magnesium-based bioceramics in orthopedic applications. Acta Biomaterialia. 2018;66:23–43. doi: 10.1016/j.actbio.2017.11.033. PubMed DOI
Golafshan N, et al. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model. Biomaterials. 2020;261:120302. doi: 10.1016/j.biomaterials.2020.120302. PubMed DOI PMC
Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002;62:600–612. doi: 10.1002/jbm.10280. PubMed DOI
Xiaoyong, S. et al. Experimental Analysis of High Temperature PEEK Materials on 3D Printing Test. in 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) 13–16 (IEEE, Changsha, China, 2017). 10.1109/ICMTMA.2017.0012.
Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus–density relationships depend on anatomic site. J. Biomech. 2003;36:897–904. doi: 10.1016/S0021-9290(03)00071-X. PubMed DOI
Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998;20:92–102. doi: 10.1016/S1350-4533(98)00007-1. PubMed DOI
Zárybnická L, et al. CaCO3 polymorphs used as additives in filament production for 3D printing. Polymers. 2022;14:199. doi: 10.3390/polym14010199. PubMed DOI PMC
Roeder RK, Sproul MM, Turner CH. Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J. Biomed. Mater. Res. 2003;67A:801–812. doi: 10.1002/jbm.a.10140. PubMed DOI
Jorfi, M. & Foster, E. J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132, (2015).
Osman AF, Alakrach AM, Kalo H, Azmi WNW, Hashim F. In vitro biostability and biocompatibility of ethyl vinyl acetate (EVA) nanocomposites for biomedical applications. RSC Adv. 2015;5:31485–31495. doi: 10.1039/C4RA15116J. DOI