Construction of single, double, or triple mutants within kojic acid synthesis genes kojA, kojR, and kojT by the CRISPR/Cas9 tool in Aspergillus oryzae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35034313
DOI
10.1007/s12223-022-00949-6
PII: 10.1007/s12223-022-00949-6
Knihovny.cz E-zdroje
- MeSH
- Aspergillus oryzae * genetika metabolismus MeSH
- CRISPR-Cas systémy MeSH
- fungální proteiny genetika metabolismus MeSH
- pyrony metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fungální proteiny MeSH
- kojic acid MeSH Prohlížeč
- pyrony MeSH
Kojic acid is an industrially important secondary metabolite produced by Aspergillus oryzae. The construction of genetic materials for kojic acid related genes is important for understanding the mechanism of kojic acid synthesis in A. oryzae. However, multigene simultaneous knockout mutants for kojic acid synthesis genes remain limited because A. oryzae is multinuclear and good selectable markers are scarce. Here, we firstly successfully obtained single mutants of kojA, kojR, and kojT by our previously constructed CRISPR/Cas9 system in A. oryzae, which demonstrated the feasibility of the targeting sgRNAs for kojA, kojR, and kojT. Then, the AMA1-based genome-editing system for multiplex gene editing was developed in A. oryzae. In the multiplex gene-editing system, two guide RNA expression cassettes were ligated in tandem and driven by two U6 promoters in the AMA1-based autonomously replicating plasmid with the Cas9-expression cassette. Moreover, the multiplex gene-editing technique was applied to target the kojic acid synthesis genes kojA, kojR, and kojT, and the double and triple mutants within kojA, kojR, and kojT were obtained successfully. Additionally, the selectable marker pyrG was knocked out in the single and triple mutants of kojA, kojR, and kojT to obtain the auxotrophic strains, which can facilitate to introduce a target gene into the single and triple mutants of kojA, kojR, and kojT for investigating their relationship. The multiplex gene-editing system and release of these materials provide a foundation for further kojic acid research and utilization.
College of Pharmacy Shenzhen Technology University Shenzhen 518118 China
Institute of Horticulture Jiangxi Academy of Agricultural Sciences Nanchang 330200 China
Zobrazit více v PubMed
Ammar HAM, Ezzat SM, Houseny AM (2017) Improved production of kojic acid by mutagenesis of Aspergillus flavus HAk1 and Aspergillus oryzae HAk2 and their potential antioxidant activity. 3 Biotech 7(5):276. https://doi.org/10.1007/s13205-017-0905-4 PubMed DOI PMC
Arakawa GY, Kudo H, Yanase A, Eguchi Y, Kodama H, Ogawa M, Koyama Y, Shindo H, Hosaka M, Tokuoka M (2019) A unique Zn(II) PubMed DOI
Bentley R (2006) From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Nat Prod Rep 23:1046–1062. https://doi.org/10.1039/b603758p PubMed DOI
Brtko J, Rondahl L, Fickova M, Hudecova D, Eybl V, Uher M (2004) Kojic acid and its derivatives: history and present state of art. Central Cent Eur J Public Health 12(Suppl):S16-18
Chaudhary J, Pathak AN, Lakhawat S (2014) Production technology and applications of kojic acid. Annu Res Rev Biol 4:3165–3196. https://doi.org/10.9734/ARRB/2014/10643 DOI
Chutrakul C, Panchanawaporn S, Jeennor S, Anantayanon J, Vorapreeda T, Vichai V, Laoteng K (2019) Functional characterization of novel U6 RNA polymerase III promoters: their implication for CRISPR-Cas9-mediated gene editing in Aspergillus oryzae. Curr Microbiol 76:1443–1451. https://doi.org/10.1007/s00284-019-01770-0 PubMed DOI
Donohoue PD, Barrangou R, May AP (2018) Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 36:134–146. https://doi.org/10.1016/j.tibtech.2017.07.007 PubMed DOI
Fan J, Zhang Z, Long C, He B, Hu Z, Jiang C, Zeng B (2020) Identification and functional characterization of glycerol dehydrogenase reveal the role in kojic acid synthesis in Aspergillus oryzae. World J Microb Biot 36:136. https://doi.org/10.1007/s11274-020-02912-4 DOI
Feng W, Liang J, Wang B, Chen J (2019) Improvement of kojic acid production in Aspergillus oryzae AR-47 mutant strain by combined mutagenesis. Bioprocess Biosyst Eng 42:753–761. https://doi.org/10.1007/s00449-019-02079-9 PubMed DOI
Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529. https://doi.org/10.1146/annurev-biophys-062215010822 PubMed DOI
Kadooka C, Yamaguchi M, Okutsu K, Yoshizaki Y, Takamine K, Katayama T, Maruyama JI, Tamaki H, Futagami T (2020) A CRISPR/Cas9-mediated gene knockout system in Aspergillus luchuensis mut. kawachii. Biosci Biotechnol Biochem 84:2179–2183. https://doi.org/10.1080/09168451.2020.1792761 PubMed DOI
Katayama T, Nakamura H, Zhang Y, Pascal A, Fujii W, Maruyama JI (2019) Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 85:e01896-e1918. https://doi.org/10.1128/AEM.01896-18 PubMed DOI PMC
Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38:637–642. https://doi.org/10.1007/s10529-015-2015-x PubMed DOI
Kawauchi M, Nishiura M, Iwashita K (2013) Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. Eukaryot Cell 12:1087–1096. https://doi.org/10.1128/EC.00003-13 PubMed DOI PMC
Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D (2018) Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res 46:1375–1385. https://doi.org/10.1093/nar/gkx1268 PubMed DOI
Malina A, Cameron CJF, Robert F, Blanchette M, Dostie J, Pelletier J (2015) PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun 6:10124. https://doi.org/10.1038/ncomms10124 PubMed DOI
Marui J, Yamane N, Ohashi-Kunihiro S, Ando T, Terabayashi Y, Sano M, Ohashi S, Ohshima E, Tachibana K, Higa Y, Nishimura M, Koike H, Machida M (2011) Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II) PubMed DOI
Maruyama J, Kitamoto K (2011) Targeted gene disruption in Koji mold Aspergillus oryzae. Methods Mol Biol 765:447–456. https://doi.org/10.1007/978-1-61779-197-0_27 PubMed DOI
Nodvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085. https://doi.org/10.1371/journal.pone.0133085 PubMed DOI PMC
Oda K, Kobayashi A, Ohashi S, Sano M (2014) Aspergillus oryzae laeA regulates kojic acid synthesis genes. Biosci Biotech Bioch 75(9):1832–1834. https://doi.org/10.1271/bbb.110235 DOI
Saeedi M, Eslamifar M, Khezri K (2019) Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother 110:582–593. https://doi.org/10.1016/j.biopha.2018.12.006 PubMed DOI
Sano M (2016) Aspergillus oryzae nrtA affects kojic acid production. Biosci Biotechnol Biochem 80:1776–1780. https://doi.org/10.1080/09168451.2016.1176517 PubMed DOI
Terabayashi Y, Sano M, Yamane N, Marui J, Tamano K, Sagara J, Dohmoto M, Oda K, Ohshima E, Tachibana K, Higa Y, Ohashi S, Koike H, Machida M (2010) Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genet Biol 47:953–961. https://doi.org/10.1016/j.fgb.2010.08.014 PubMed DOI
Wan HM, Chen CC, Giridhar R, Chang TS, Wu WT (2005) Repeated-batch production of kojic acid in a cell-retention fermenter using Aspergillus oryzae M3B9. J Ind Microbiol Biotechnol 32:227–233. https://doi.org/10.1007/s10295-005-0230-5 PubMed DOI
Yamada R, Yoshie T, Wakai S, Asai-Nakashima N, Okazaki F, Ogino C, Hisada H, Tsutsumi H, Hata Y, Kondo A (2014) Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microb Cell Fact 13:71. https://doi.org/10.1186/1475-2859-13-71 PubMed DOI PMC