Construction of single, double, or triple mutants within kojic acid synthesis genes kojA, kojR, and kojT by the CRISPR/Cas9 tool in Aspergillus oryzae

. 2022 Jun ; 67 (3) : 459-468. [epub] 20220115

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35034313
Odkazy

PubMed 35034313
DOI 10.1007/s12223-022-00949-6
PII: 10.1007/s12223-022-00949-6
Knihovny.cz E-zdroje

Kojic acid is an industrially important secondary metabolite produced by Aspergillus oryzae. The construction of genetic materials for kojic acid related genes is important for understanding the mechanism of kojic acid synthesis in A. oryzae. However, multigene simultaneous knockout mutants for kojic acid synthesis genes remain limited because A. oryzae is multinuclear and good selectable markers are scarce. Here, we firstly successfully obtained single mutants of kojA, kojR, and kojT by our previously constructed CRISPR/Cas9 system in A. oryzae, which demonstrated the feasibility of the targeting sgRNAs for kojA, kojR, and kojT. Then, the AMA1-based genome-editing system for multiplex gene editing was developed in A. oryzae. In the multiplex gene-editing system, two guide RNA expression cassettes were ligated in tandem and driven by two U6 promoters in the AMA1-based autonomously replicating plasmid with the Cas9-expression cassette. Moreover, the multiplex gene-editing technique was applied to target the kojic acid synthesis genes kojA, kojR, and kojT, and the double and triple mutants within kojA, kojR, and kojT were obtained successfully. Additionally, the selectable marker pyrG was knocked out in the single and triple mutants of kojA, kojR, and kojT to obtain the auxotrophic strains, which can facilitate to introduce a target gene into the single and triple mutants of kojA, kojR, and kojT for investigating their relationship. The multiplex gene-editing system and release of these materials provide a foundation for further kojic acid research and utilization.

Zobrazit více v PubMed

Ammar HAM, Ezzat SM, Houseny AM (2017) Improved production of kojic acid by mutagenesis of Aspergillus flavus HAk1 and Aspergillus oryzae HAk2 and their potential antioxidant activity. 3 Biotech 7(5):276. https://doi.org/10.1007/s13205-017-0905-4 PubMed DOI PMC

Arakawa GY, Kudo H, Yanase A, Eguchi Y, Kodama H, Ogawa M, Koyama Y, Shindo H, Hosaka M, Tokuoka M (2019) A unique Zn(II) PubMed DOI

Bentley R (2006) From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Nat Prod Rep 23:1046–1062. https://doi.org/10.1039/b603758p PubMed DOI

Brtko J, Rondahl L, Fickova M, Hudecova D, Eybl V, Uher M (2004) Kojic acid and its derivatives: history and present state of art. Central Cent Eur J Public Health 12(Suppl):S16-18

Chaudhary J, Pathak AN, Lakhawat S (2014) Production technology and applications of kojic acid. Annu Res Rev Biol 4:3165–3196. https://doi.org/10.9734/ARRB/2014/10643 DOI

Chutrakul C, Panchanawaporn S, Jeennor S, Anantayanon J, Vorapreeda T, Vichai V, Laoteng K (2019) Functional characterization of novel U6 RNA polymerase III promoters: their implication for CRISPR-Cas9-mediated gene editing in Aspergillus oryzae. Curr Microbiol 76:1443–1451. https://doi.org/10.1007/s00284-019-01770-0 PubMed DOI

Donohoue PD, Barrangou R, May AP (2018) Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 36:134–146. https://doi.org/10.1016/j.tibtech.2017.07.007 PubMed DOI

Fan J, Zhang Z, Long C, He B, Hu Z, Jiang C, Zeng B (2020) Identification and functional characterization of glycerol dehydrogenase reveal the role in kojic acid synthesis in Aspergillus oryzae. World J Microb Biot 36:136. https://doi.org/10.1007/s11274-020-02912-4 DOI

Feng W, Liang J, Wang B, Chen J (2019) Improvement of kojic acid production in Aspergillus oryzae AR-47 mutant strain by combined mutagenesis. Bioprocess Biosyst Eng 42:753–761. https://doi.org/10.1007/s00449-019-02079-9 PubMed DOI

Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529. https://doi.org/10.1146/annurev-biophys-062215010822 PubMed DOI

Kadooka C, Yamaguchi M, Okutsu K, Yoshizaki Y, Takamine K, Katayama T, Maruyama JI, Tamaki H, Futagami T (2020) A CRISPR/Cas9-mediated gene knockout system in Aspergillus luchuensis mut. kawachii. Biosci Biotechnol Biochem 84:2179–2183. https://doi.org/10.1080/09168451.2020.1792761 PubMed DOI

Katayama T, Nakamura H, Zhang Y, Pascal A, Fujii W, Maruyama JI (2019) Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 85:e01896-e1918. https://doi.org/10.1128/AEM.01896-18 PubMed DOI PMC

Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38:637–642. https://doi.org/10.1007/s10529-015-2015-x PubMed DOI

Kawauchi M, Nishiura M, Iwashita K (2013) Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. Eukaryot Cell 12:1087–1096. https://doi.org/10.1128/EC.00003-13 PubMed DOI PMC

Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D (2018) Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res 46:1375–1385. https://doi.org/10.1093/nar/gkx1268 PubMed DOI

Malina A, Cameron CJF, Robert F, Blanchette M, Dostie J, Pelletier J (2015) PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun 6:10124. https://doi.org/10.1038/ncomms10124 PubMed DOI

Marui J, Yamane N, Ohashi-Kunihiro S, Ando T, Terabayashi Y, Sano M, Ohashi S, Ohshima E, Tachibana K, Higa Y, Nishimura M, Koike H, Machida M (2011) Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II) PubMed DOI

Maruyama J, Kitamoto K (2011) Targeted gene disruption in Koji mold Aspergillus oryzae. Methods Mol Biol 765:447–456. https://doi.org/10.1007/978-1-61779-197-0_27 PubMed DOI

Nodvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085. https://doi.org/10.1371/journal.pone.0133085 PubMed DOI PMC

Oda K, Kobayashi A, Ohashi S, Sano M (2014) Aspergillus oryzae laeA regulates kojic acid synthesis genes. Biosci Biotech Bioch 75(9):1832–1834. https://doi.org/10.1271/bbb.110235 DOI

Saeedi M, Eslamifar M, Khezri K (2019) Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother 110:582–593. https://doi.org/10.1016/j.biopha.2018.12.006 PubMed DOI

Sano M (2016) Aspergillus oryzae nrtA affects kojic acid production. Biosci Biotechnol Biochem 80:1776–1780. https://doi.org/10.1080/09168451.2016.1176517 PubMed DOI

Terabayashi Y, Sano M, Yamane N, Marui J, Tamano K, Sagara J, Dohmoto M, Oda K, Ohshima E, Tachibana K, Higa Y, Ohashi S, Koike H, Machida M (2010) Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genet Biol 47:953–961. https://doi.org/10.1016/j.fgb.2010.08.014 PubMed DOI

Wan HM, Chen CC, Giridhar R, Chang TS, Wu WT (2005) Repeated-batch production of kojic acid in a cell-retention fermenter using Aspergillus oryzae M3B9. J Ind Microbiol Biotechnol 32:227–233. https://doi.org/10.1007/s10295-005-0230-5 PubMed DOI

Yamada R, Yoshie T, Wakai S, Asai-Nakashima N, Okazaki F, Ogino C, Hisada H, Tsutsumi H, Hata Y, Kondo A (2014) Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microb Cell Fact 13:71. https://doi.org/10.1186/1475-2859-13-71 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...