The protective effect of mangiferin on osteoarthritis: An in vitro and in vivo study

. 2022 Mar 25 ; 71 (1) : 135-145. [epub] 20220119

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35043648

Mangiferin is a kind of polyphenol chemical compound separated from these herbal medicines of Mangifera indica L., Anemarrhena asphodeloides Bge. and Belamcanda chinensis L., which has anti-inflammatory, anti-virus, and other physiological activities without toxic effects. Osteoarthritis (OA) is a chronic disease that is also a kind of arthritis disease in which articular cartilage or bones under the joint is damaged. In addition, artificial replacements are required in severe cases. At present, there are not too much researches on the potential biological activities of mangiferin that plays a protective role in the treatment of OA. In this study, we evaluated the protective effect of mangiferin on osteoarthritis (OA) in vitro and in vivo. First, the effect of different concentrations of mangiferin on rat chondrocytes was determined by MTT assay. Second, the effects of mangiferin on the expression levels of matrix metalloproteinase (MMP)-13, TNF alpha, Collagen II, Caspase-3, and cystatin-C in interleukin-1beta (IL-1beta)-induced rat chondrocytes were examined by the real-time polymerase chain reaction in vitro, meanwhile the effects of mangiferin on the nuclear factor kappa-B (NF-kappaB) signaling pathway were also investigated by Western Blot. Finally, the anti-osteoarthritic protective effect of mangiferin was evaluated in the rat model by anterior cruciate ligament transection (ACLT) combined with bilateral ovariectomy-induced OA in vivo. The results showed that the mangiferin was found to inhibit the expression of MMP-13, TNF-alpha, and Caspase-3 which also increased the expression of Collagen II and cystatin-C in IL 1beta induced rat chondrocytes. In addition, IL-1beta-induced activation of nuclear factor kappa-B (NF-kappaB) and the degradation of inhibitor of kappaB (IkappaB)-alpha were suppressed by mangiferin. For the in vivo study in a rat model of OA, 100 microl of mangiferin was administered by intra-articular injections for rats, the results showed that the cartilage degradation was suppressed by mangiferin through Micro CT and Histological Examination. According to both in vitro and in vivo results, mangiferin has a protective effect in the treatment of OA which may be a promising therapeutic agent for OA.

Zobrazit více v PubMed

Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 2005;44:7–16. doi: 10.1093/rheumatology/keh344. PubMed DOI

Gowen M, Wood DD, Russell RG. Stimulation of the proliferation of human bone cells in vitro by human monocyte products with interleukin-1 activity. J Clin Invest. 1985;75:1223–1229. doi: 10.1172/JCI111819. PubMed DOI PMC

Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: Differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum. 2000;43:801–811. doi: 10.1002/1529-0131(200004)43:4<801::AID-ANR10>3.0.CO;2-4. PubMed DOI

Pal R, Chaudhary MJ, Tiwari PC, Babu S, Pant KK. Protective role of theophylline and their interaction with nitric oxide (NO) in adjuvant-induced rheumatoid arthritis in rats. Int Immunopharmacol. 2015;29:854–862. doi: 10.1016/j.intimp.2015.08.031. PubMed DOI

Lee SW, Song YS, Shin SH, Kim KT, Park YC, Park BS, Yun I, Kim K, Lee SY, Chung WT, Lee HJ, Yoo YH. Cilostazol protects rat chondrocytes against nitric oxide-induced apoptosis in vitro and prevents cartilage destruction in a rat model of osteoarthritis. Arthritis Rheum. 2008;58:790–00. doi: 10.1002/art.23220. PubMed DOI

Rajendran P, Rengarajan T, Nishigaki I, Ekambaram G, Sakthisekaran D. Potent chemopreventive effect of mangiferin on lung carcinogenesis in experimental Swiss albino mice. J Cancer Res Ther. 2014;10:1033–1039. doi: 10.4103/0973-1482.137966. PubMed DOI

Rajendran P, Jayakumar T, Nishigaki I, Ekambaram G, Nishigaki Y, Vetriselvi J, Sakthisekaran D. Immunomodulatory effect of mangiferin in experimental animals with benzo(a)pyrene-induced lung carcinogenesis. Int J Biomed Sci. 2013;9:68–74. PubMed PMC

Li Y, Wu Y, Jiang K, Han W, Zhang J, Xie L, Liu Y, Xiao J, Wang X. Mangiferin prevents TBHP-induced apoptosis and ECM degradation in mouse osteoarthritic chondrocytes via restoring autophagy and ameliorates murine osteoarthritis. Oxid Med Cell Longev. 2019;2019:8783197. doi: 10.1155/2019/8783197. PubMed DOI PMC

Jang JH, Lee KH, Jung HK, Sim MO, Kim TM, Woo KW, An BK, Cho JH, Cho HW. Anti-inflammatory effects of 6’-O-acetyl mangiferin from Iris rossii Baker via NF-kappab signal blocking in lipopolysaccharide-stimulated RAW 264.7 cells. Chem Biol Interact. 2016;257:54–60. doi: 10.1016/j.cbi.2016.07.029. PubMed DOI

Chen WP, Wang YL, Tang JL, Hu PF, Bao JP, Wu LD. Morin inhibits interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Int Immunopharmacol. 2012;12:447–452. doi: 10.1016/j.intimp.2011.12.024. PubMed DOI

Heinecke LF, Grzanna MW, Au AY, Mochal CA, Rashmir-Raven A, Frondoza CG. Inhibition of cyclooxygenase-2 expression and prostaglandin E2 production in chondrocytes by avocado soybean unsaponifiables and epigallocatechin gallate. Osteoarthritis Cartilage. 2010;18:220–27. doi: 10.1016/j.joca.2009.08.015. PubMed DOI

Largo R, Alvarez-Soria MA, Diez-Ortego I, Calvo E, Sanchez-Pernaute O, Egido J, Herrero-Beaumont G. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2003;11:290–98. doi: 10.1016/s1063-4584(03)00028-1. PubMed DOI

Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong LT. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone. 2006;38:234–243. doi: 10.1016/j.bone.2005.08.007. PubMed DOI

Shikhman AR, Amiel D, D’Lima D, Hwang SB, Hu C, Xu A, Hashimoto S, Kobayashi K, Sasho T, Lotz MK. Chondroprotective activity of N-acetylglucosamine in rabbits with experimental osteoarthritis. Ann Rheum Dis. 2005;64:89–94. doi: 10.1136/ard.2003.019406. PubMed DOI PMC

Oegema TR, Jr, Deloria LB, Sandy JD, Hart DA. Effect of oral glucosamine on cartilage and meniscus in normal and chymopapain-injected knees of young rabbits. Arthritis Rheum. 2002;46:2495–2503. doi: 10.1002/art.10499. PubMed DOI

Tang T, Muneta T, Ju YJ, Nimura A, Miyazaki K, Masuda H, Mochizuki T, Sekiya I. Serum keratan sulfate transiently increases in the early stage of osteoarthritis during strenuous running of rats: Protective effect of intraarticular hyaluronan injection. Arthritis Res Ther. 2008;10:R13. doi: 10.1186/ar2363. PubMed DOI PMC

Naito K, Watari T, Furuhata A, Yomogida S, Sakamoto K, Kurosawa H, Kaneko K, Nagaoka I. Evaluation of the effect of glucosamine on an experimental rat osteoarthritis model. Life Sci. 2010;86:538–543. doi: 10.1016/j.lfs.2010.02.015. PubMed DOI

Stevens AL, Wishnok JS, White FM, Grodzinsky AJ, Tannenbaum SR. Mechanical injury and cytokines cause loss of cartilage integrity and upregulate proteins associated with catabolism, immunity, inflammation, and repair. Mol Cell Proteomics. 2009;8:1475–1489. doi: 10.1074/mcp.M800181-MCP200. PubMed DOI PMC

Lotz M. Cytokines in cartilage injury and repair. Clin Orthop Relat Res. 2001;(391 Suppl):S108–S115. doi: 10.1097/00003086-200110001-00011. PubMed DOI

Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44:585–594. doi: 10.1002/1529-0131(200103)44:3<585::AID-ANR107>3.0.CO;2-C. PubMed DOI

Pelletier JP, Roughley PJ, DiBattista JA, McCollum R, Martel-Pelletier J. Are cytokines involved in osteoarthritic pathophysiology? Semin Arthritis Rheum. 2001;44:585–594. doi: 10.1002/1529-0131(200103)44:3<585::AID-ANR107>3.0.CO;2-C. PubMed DOI

Naito K, Takahashi M, Kushida K, Suzuki M, Ohishi T, Miura M, Inoue T, Nagano A. Measurement of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-1 (TIMP-1) in patients with knee osteoarthritis: comparison with generalized osteoarthritis. Rheumatology (Oxford) 1991;20:12–25. doi: 10.1016/0049-0172(91)90024-t. PubMed DOI

Murphy G, Knauper V, Atkinson S, Butler G, English W, Hutton M, Stracke J, Clark I. Matrix metalloproteinases in arthritic disease. Arthritis Res. 2002;4(Suppl 3):S39–S49. doi: 10.1186/ar572. PubMed DOI PMC

Knauper V, Bailey L, Worley JR, Soloway P, Patterson ML, Murphy G. Cellular activation of proMMP-13 by MT1-MMP depends on the C-terminal domain of MMP-13. FEBS Lett. 2002;532:127–130. doi: 10.1016/s0014-5793(02)03654-2. PubMed DOI

Wang XX, Cai L. Expression level of proteoglycan, collagen and type II collagen in osteoarthritis rat model is promoted and degradation of cartilage is prevented by glucosamine methyl ester. Eur Rev Med Pharmacol Sci. 2018;22:3609–3616. doi: 10.26355/eurrev_201806_15188. PubMed DOI

Sun J, Wei X, Lu Y, Cui M, Li F, Lu J, Liu Y, Zhang X. Glutaredoxin 1 (GRX1) inhibits oxidative stress and apoptosis of chondrocytes by regulating CREB/HO-1 in osteoarthritis. Mol Immunol. 2017;90:211–218. doi: 10.1016/j.molimm.2017.08.006. PubMed DOI

Pan Y, Chen D, Lu Q, Liu L, Li X, Li Z. Baicalin prevents the apoptosis of endplate chondrocytes by inhibiting the oxidative stress induced by H2O2. Mol Med Rep. 2017;16:2985–2991. doi: 10.3892/mmr.2017.6904. PubMed DOI

Sakata S, Hayashi S, Fujishiro T, Kawakita K, Kanzaki N, Hashimoto S, Iwasa K, Chinzei N, Kihara S, Haneda M, Ueha T, Nishiyama T, Kuroda R, Kurosaka M. Oxidative stress-induced apoptosis and matrix loss of chondrocytes is inhibited by eicosapentaenoic acid. J Orthop Res. 2015;33:359–365. doi: 10.1002/jor.22767. PubMed DOI

Gao G, Ding H, Zhuang C, Fan W. Effects of hesperidin on H(2)O(2)-treated chondrocytes and cartilage in a rat osteoarthritis model. Med Sci Monit. 2018;24:9177–9186. doi: 10.12659/MSM.913726. PubMed DOI PMC

Lecaille F, Bromme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie. 2008b;90:208–226. doi: 10.1016/j.biochi.2007.08.011. PubMed DOI

Yan C, Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol. 2018;22:3609–3616. doi: 10.26355/eurrev_201806_15188. PubMed DOI

Ahn KS, Aggarwal BB. Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann N Y Acad Sci. 2005;1056:218–233. doi: 10.1196/annals.1352.026. PubMed DOI

Kim JE, Song DH, Kim SH, Jung Y, Kim SJ. Development and characterization of various osteoarthritis models for tissue engineering. PLoS One. 2018;13:e0194288. doi: 10.1371/journal.pone.0194288. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...