Blockade of alpha2-adrenergic receptors in the caudal raphe region enhances the renal sympathetic nerve activity response to acute intermittent hypercapnia in rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35043650
PubMed Central
PMC8997674
DOI
10.33549/physiolres.934717
PII: 934717
Knihovny.cz E-zdroje
- MeSH
- adrenergní receptory MeSH
- hyperkapnie * chemicky indukované MeSH
- krevní tlak fyziologie MeSH
- krysa rodu Rattus MeSH
- nuclei raphe MeSH
- potkani Sprague-Dawley MeSH
- srdeční frekvence MeSH
- sympatický nervový systém * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adrenergní receptory MeSH
The study investigated the role of alpha2-adrenergic receptors of the caudal raphe region in the sympathetic and cardiovascular responses to the acute intermittent hypercapnia (AIHc). Urethane-anesthetized, vagotomized, mechanically ventilated Sprague-Dawley rats (n=38) were exposed to the AIHc protocol (5×3 min, 15 % CO2+50 % O2) in hyperoxic background (50 % O2). alpha2-adrenergic receptor antagonist-yohimbine was applied intravenously (1 mg/kg, n=9) or microinjected into the caudal raphe region (2 mM, n=12) prior to exposure to AIHc. Control groups of animals received saline intravenously (n=7) or into the caudal raphe region (n=10) prior to exposure to AIHc. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were monitored before exposure to the AIHc protocol (T0), during five hypercapnic episodes (THc1-5) and at 15 min following the end of the last hypercapnic episode (T15). Following intravenous administration of yohimbine, RSNA was significantly greater during THc1-5 and at T15 than in the control group (P<0.05). When yohimbine was microinjected into the caudal raphe region, AIHc elicited greater increases in RSNA during THc1-5 when compared to the controls (THc1: 138.0+/-4.0 % vs. 123.7+/-4.8 %, P=0.032; THc2: 137.1+/-5.0 % vs. 124.1+/-4.5 %, P=0.071; THc3: 143.1+/-6.4 % vs. 122.0±4.8 %, P=0.020; THc4: 146.1+/-6.2 % vs. 120.7+/-5.7 %, P=0.007 and THc5: 143.2+/-7.7 % vs. 119.2+/-7.2 %, P=0.038). During THc1-5, significant decreases in HR from T0 were observed in all groups, while changes in MAP were observed in the group that received yohimbine intravenously. These findings suggest that blockade of the alpha2-adrenegic receptors in the caudal raphe region might have an important role in sympathetic responses to AIHc.
Zobrazit více v PubMed
Makeham JM, Goodchild AK, Costin NS, Pilowsky PM. Hypercapnia selectively attenuates the somato-sympathetic reflex. Respir Physiol Neurobiol. 2004;140:133–143. doi: 10.1016/j.resp.2003.11.003. PubMed DOI
Dogas Z, Stuth EA, Hopp FA, McCrimmon DR, Zuperku EJ. NMDA receptor-mediated transmission of carotid body chemoreceptor input to expiratory bulbospinal neurones in dogs. J Physiol. 1995;487:639–651. doi: 10.1113/jphysiol.1995.sp020906. PubMed DOI PMC
Oikawa S, Hirakawa H, Kusakabe T, Nakashima Y, Hayashida Y. Autonomic cardiovascular responses to hypercapnia in conscious rats: the roles of the chemo- and baroreceptors. Auton Neurosci. 2005;117:105–114. doi: 10.1016/j.autneu.2004.11.009. PubMed DOI
Takakura AC, Moreira TS. Contribution of excitatory amino acid receptors of the retrotrapezoid nucleus to the sympathetic chemoreflex in rats. Exp Physiol. 2011;96:989–999. doi: 10.1113/expphysiol.2011.058842. PubMed DOI
Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol. 2014;4:1511–1562. doi: 10.1002/cphy.c140004. PubMed DOI PMC
Richerson GB. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci. 2004;5:449–461. doi: 10.1038/nrn1409. PubMed DOI
Andrzejewski K, Budzinska K, Kaczynska K. Effect of 6-OHDA on hypercapnic ventilatory response in the rat model of Parkinson’s disease. Physiol Res. 2019;68:285–293. doi: 10.33549/physiolres.933949. PubMed DOI
Baker TL, Fuller DD, Zabka AG, Mitchell GS. Respiratory plasticity: Differential actions of continuous and episodic hypoxia and hypercapnia. Respir Physiol. 2001;129:25–35. doi: 10.1016/s0034-5687(01)00280-8. PubMed DOI
Kinkead R, Bach KB, Johnson SM, Hodgeman BA, Mitchell GS. Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comp Biochem Physiol A Mol Integr Physiol. 2001;130:207–218. doi: 10.1016/s1095-6433(01)00393-2. PubMed DOI
Stipica I, Pavlinac Dodig I, Pecotic R, Dogas Z, Valic Z, Valic M. Periodicity during hypercapnic and hypoxic stimulus is crucial in distinct aspects of phrenic nerve plasticity. Physiol Res. 2016;65:133–143. doi: 10.33549/physiolres.933012. PubMed DOI
Stipica Safic I, Pecotic R, Pavlinac Dodig I, Dogas Z, Valic Z, Valic M. Phrenic long-term depression evoked by intermittent hypercapnia is modulated by serotonergic and adrenergic receptors in raphe nuclei. J Neurophysiol. 2018;120:321–329. doi: 10.1152/jn.00776.2017. PubMed DOI
Valic M, Pecotic R, Pavlinac Dodig I, Valic Z, Stipica I, Dogas Z. Intermittent hypercapnia-induced phrenic long-term depression is revealed after serotonin receptor blockade with methysergide in anaesthetized rats. Exp Physiol. 2016;101:319–331. doi: 10.1113/EP085161. PubMed DOI
Huang J, Lusina S, Xie T, Ji E, Xiang S, Liu Y, Weiss JW. Sympathetic response to chemostimulation in conscious rats exposed to chronic intermittent hypoxia. Respir Physiol Neurobiol. 2009;166:102–106. doi: 10.1016/j.resp.2009.02.010. PubMed DOI
Moreira TS, Takakura AC, Colombari E, Guyenet PG. Central chemoreceptors and sympathetic vasomotor outflow. J Physiol. 2006;577:369–386. doi: 10.1113/jphysiol.2006.115600. PubMed DOI PMC
Takakura AC, Colombari E, Menani JV, Moreira TS. Ventrolateral medulla mechanisms involved in cardiorespiratory responses to central chemoreceptor activation in rats. Am J Physiol Regul Integr Comp Physiol. 2011;300:R501–R510. doi: 10.1152/ajpregu.00220.2010. PubMed DOI
Madirazza K, Pecotic R, Pavlinac Dodig I, Valic M, Dogas Z. Hyperoxia blunts renal sympathetic nerve activity response to acute intermittent hypercapnia in rats. J Physiol Pharmacol. 2019;70:737–746. doi: 10.26402/jpp.2019.5.09. PubMed DOI
Barnett WH, Abdala AP, Paton JF, Rybak IA, Zoccal DB, Molkov YI. Chemoreception and neuroplasticity in respiratory circuits. Exp Neurol. 2017;287:153–164. doi: 10.1016/j.expneurol.2016.05.036. PubMed DOI PMC
Guyenet PG, Stornetta RL, Abbott SB, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (1985) 2010;108:995–1002. doi: 10.1152/japplphysiol.00712.2009. PubMed DOI PMC
Guyenet PG, Stornetta RL, Souza G, Abbott SBG, Shi Y, Bayliss DA. The retrotrapezoid nucleus: Central chemoreceptor and regulator of breathing automaticity. Trends Neurosci. 2019;42:807–824. doi: 10.1016/j.tins.2019.09.002. PubMed DOI PMC
Moreira TS, Takakura AC, Damasceno RS, Falquetto B, Totola LT, Sobrinho CR, Ragioto DT, Zolezi FP. Central chemoreceptors and neural mechanisms of cardiorespiratory control. Braz J Med Biol Res. 2011;44:883–889. doi: 10.1590/s0100-879x2011007500094. PubMed DOI
Biancardi V, Bicego KC, Almeida MC, Gargaglioni LH. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch. 2008;455:1119–1128. doi: 10.1007/s00424-007-0338-8. PubMed DOI
Elam M, Yao T, Thoren P, Svensson TH. Hypercapnia and hypoxia: chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Res. 1981;222:373–381. doi: 10.1016/0006-8993(81)91040-4. PubMed DOI
Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol. 2008;6:254–285. doi: 10.2174/157015908785777193. PubMed DOI PMC
Jacobs BL, Martin-Cora FJ, Fornal CA. Activity of medullary serotonergic neurons in freely moving animals. Brain Res Brain Res Rev. 2002;40:45–52. doi: 10.1016/s0165-0173(02)00187-x. PubMed DOI
Allen GV, Cechetto DF. Serotoninergic and nonserotoninergic neurons in the medullary raphe system have axon collateral projections to autonomic and somatic cell groups in the medulla and spinal cord. J Comp Neurol. 1994;350:357–366. doi: 10.1002/cne.903500303. PubMed DOI
Loewy AD, Neil JJ. The role of descending monoaminergic systems in central control of blood pressure. Fed Proc. 1981;40:2778–2785. PubMed
Morrison SF. Raphe pallidus excites a unique class of sympathetic preganglionic neurons. Am J Physiol. 1993;265:R82–R89. doi: 10.1152/ajpregu.1993.265.1.R82. PubMed DOI
Pilowsky PM, Lung MS, Spirovski D, McMullan S. Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters. Philos Trans R Soc Lond B Biol Sci. 2009;364:2537–2552. doi: 10.1098/rstb.2009.0092. PubMed DOI PMC
Bago M, Marson L, Dean C. Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei. Brain Res. 2002;945:249–258. doi: 10.1016/s0006-8993(02)02811-1. PubMed DOI
Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 4th Edition. Academic Press; San Diego: 1998. p. 256.
Philipp M, Brede M, Hein L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol. 2002;283:R287–R295. doi: 10.1152/ajpregu.00123.2002. PubMed DOI
Lin YH, Liu YP, Lin YC, Lee PL, Tung CS. Cooling-evoked hemodynamic perturbations facilitate sympathetic activity with subsequent myogenic vascular oscillations via alpha2-adrenergic receptors. Physiol Res. 2017;66:449–457. doi: 10.33549/physiolres.933385. PubMed DOI
Hubbard JW, Pfister SL, Biediger AM, Herzig TC, Keeton TK. The pharmacokinetic properties of yohimbine in the conscious rat. Naunyn Schmiedebergs Arch Pharmacol. 1988;337:583–587. doi: 10.1007/BF00182736. PubMed DOI
Unnerstall JR, Kopajtic TA, Kuhar MJ. Distribution of alpha 2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res. 1984;319:69–101. doi: 10.1016/0165-0173(84)90030-4. PubMed DOI
Burgraff NJ, Neumueller SE, Buchholz KJ, LeClaire J, Hodges MR, Pan L, Forster HV. Brainstem serotonergic, catecholaminergic, and inflammatory adaptations during chronic hypercapnia in goats. FASEB J. 2019;33:14491–14505. doi: 10.1096/fj.201901288RR. PubMed DOI PMC
Garcia de Yebenes Prous J, Carlsson A, Mena Gomez MA. The effect of CO2 on monoamine metabolism in rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1977;301:11–15. doi: 10.1007/BF00501258. PubMed DOI
Stone EA. Rapid adaptation of the stimulatory effect of CO2 on brain norepinephrine metabolism. Naunyn Schmiedebergs Arch Pharmacol. 1983;324:313–315. doi: 10.1007/BF00502629. PubMed DOI
Horiuchi J, McAllen RM, Allen AM, Killinger S, Fontes MA, Dampney RA. Descending vasomotor pathways from the dorsomedial hypothalamic nucleus: role of medullary raphe and RVLM. Am J Physiol Regul Integr Comp Physiol. 2004;287:R824–R832. doi: 10.1152/ajpregu.00221.2004. PubMed DOI
Lovick TA. The medullary raphe nuclei: a system for integration and gain control in autonomic and somatomotor responsiveness? Exp Physiol. 1997;82:31–41. doi: 10.1113/expphysiol.1997.sp004013. PubMed DOI
Nattie E, Li A. Central chemoreceptors: Locations and functions. Compr Physiol. 2012;2:221–254. doi: 10.1002/cphy.c100083. PubMed DOI PMC
Leirao IP, Colombari DSA, da Silva GSF, Zoccal DB. Lesion of serotonergic afferents to the retrotrapezoid nucleus impairs the tachypneic response to hypercapnia in unanesthetized animals. Neuroscience. 2021;452:63–77. doi: 10.1016/j.neuroscience.2020.11.005. PubMed DOI
Bach KB, Mitchell GS. Hypercapnia-induced long-term depression of respiratory activity requires alpha2-adrenergic receptors. J Appl Physiol (1985) 1998;84:2099–2105. doi: 10.1152/jappl.1998.84.6.2099. PubMed DOI
Dobbins EG, Feldman JL. Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol. 1994;347:64–86. doi: 10.1002/cne.903470106. PubMed DOI
Haddjeri N, Blier P, de Montigny C. Effect of the alpha-2 adrenoceptor antagonist mirtazapine on the 5-hydroxytryptamine system in the rat brain. J Pharmacol Exp Ther. 1996;277:861–871. PubMed
Morrison SF. RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am J Physiol. 1999;276:R962–R973. doi: 10.1152/ajpregu.1999.276.4.R962. PubMed DOI
Maggi CA, Meli A. Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 1: General considerations. Experientia. 1986;42:109–114. doi: 10.1007/bf01952426. PubMed DOI
Goldberg MR, Robertson D. Yohimbine: a pharmacological probe for study of the alpha 2-adrenoreceptor. Pharmacol Rev. 1983;35:143–180. PubMed
Winter JC, Rabin RA. Yohimbine as a serotonergic agent: evidence from receptor binding and drug discrimination. J Pharmacol Exp Ther. 1992;263:682–689. PubMed
Zaretsky DV, Zaretskaia MV, DiMicco JA, Rusyniak DE. Yohimbine is a 5-HT1A agonist in rats in doses exceeding 1 mg/kg. Neurosci Lett. 2015;606:215–219. doi: 10.1016/j.neulet.2015.09.008. PubMed DOI PMC
Wang W, Bradley SR, Richerson GB. Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(CO2) J Physiol. 2002;540:951–970. doi: 10.1113/jphysiol.2001.013443. PubMed DOI PMC